212
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, biological activity, molecular docking studies of a novel series of 3-Aryl-7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives as the acetylcholinesterase inhibitors

, , , , , , , & show all
Pages 2478-2489 | Received 13 Oct 2019, Accepted 23 Mar 2020, Published online: 16 Apr 2020

References

  • Atienzar, F. A., Blomme, E. A., Chen, M., Hewitt, P., Kenna, J. G., Labbe, G., Moulin, F., Pognan, F., Roth, A. B., Suter-Dick, L., Ukairo, O., Weaver, R. J., Will, Y., & Dambach, D. M. (2016). Key challenges and opportunities associated with the use of in vitro models to detect human DILI: Integrated risk assessment and mitigation plans. BioMed Research International, 2016, 9737920. 10.1155/2016/9737920
  • Carletti, E., Colletier, J. P., Dupeux, F., Trovaslet, M., Masson, P., & Nachon, F. (2010). Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation. Journal of Medicinal Chemistry, 53(10), 4002–4008. 10.1021/jm901853b
  • Cheung, J., Rudolph, M., Burshteyn, F., Cassidy, M., Gary, E., Love, J., Franklin, M., & Height, J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. 10.1021/jm300871x
  • de Almeida, J. S. F. D., Cavalcante, S. F. A., Dolezal, R., Kuca, K., Musilek, K., Jun, D., & França, T. C. C. (2019). Molecular modeling studies on the interactions of aflatoxin B1 and its metabolites with the peripheral anionic site of human acetylcholinesterase. Journal of Biomolecular Structure and Dynamics, 37(8), 2041–2048. 10.1080/07391102.2018.1475259
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T., & Sussman, J. (2010). Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 187(1-3), 10–22. 10.1016/j.cbi.2010.01.042
  • Ece, A. (2020). Towards more effective acetylcholinesterase inhibitors: A comprehensive modelling study based on human acetylcholinesterase protein-drug complex. Journal of Biomolecular Structure and Dynamics, 38(2), 565–572. 10.1080/07391102.2019.1583606
  • Ece, A., & Sevin, F. (2010). Exploring QSAR on 4-cyclohexylmethoxypyrimidines as antitumor agents for their inhibitory activity of CDK2. Letters in Drug Design & Discovery, 7(9), 625–631. 10.2174/157018010792929612
  • Eckert, A., Keil, U., Marques, C., Bonert, A., Frey, C., Schüssel, K., & Müller, W. (2003). Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochemical Pharmacology, 66(8), 1627–1634. 10.1016/S0006-2952(03)00534-3
  • Ellman, G., Courtney, K., Andres, V., & Featherstone, R. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. 10.1016/0006-2952(61)90145-9
  • Eslami, M., Nezafat, N., Negahdaripour, M., & Ghasemi, Y. (2019). Computational approach to suggest a new multi-target-directed ligand as a potential medication for Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics, 37(18), 4825–4839. 10.1080/07391102.2018.1564701
  • Han, L., Lai, P., & Du, J.-R. (2014). Deciphering molecular mechanism underlying hypolipidemic activity of echinocystic acid. Evidence-Based Complementary and Alternative Medicine, 2014, 1–7. 10.1155/2014/823154
  • Harel, M., Kleywegt, G. J., Ravelli, R. B., Silman, I., & Sussman, J. L. (1995). Crystal structure of an acetylcholinesterase-fasciculin complex: Interaction of a three-fingered toxin from snake venom with its target. Structure, 3(12), 1355–1366. 10.1016/S0969-2126(01)00273-8
  • Harel, M., Quinn, D., Nair, H., Silman, I., & Sussman, J. (1996). The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. Journal of the American Chemical Society, 118(10), 2340–2346. 10.1021/ja952232h
  • Itteboina, R., Ballu, S., Sivan, S., & Manga, V. (2017). Molecular modeling-driven approach for identification of Janus kinase 1 inhibitors through 3D-QSAR, docking and molecular dynamics simulations. Journal of Receptors and Signal Transduction, 37(5), 453–469. 10.1080/10799893.2017.1328442
  • Jin, Z., Yang, L., Liu, S.-J., Wang, J., Li, S., Lin, H.-Q., Wan, D., & Hu, C. (2010a). Synthesis and biological evaluation of 3,6-diaryl-7H-thiazolo[. Archives of Pharmacal Research, 33(10), 1641–1649. 10.1007/s12272-010-1013-8
  • Jin, Z., Yang, L., Xu, X. N., Huang, E. R., Wan, D. C., Li, S., Huang, H. Q., & Hu, C. (2010b). Synthesis and biological activity of 3,6-diaryl-7H-thiazolo[. Science China Chemistry, 53(11), 2297–2303. 10.1007/s11426-010-4094-9
  • Kangueane, P., & Nilofer, C. (2018). Patented Protein Structural Complexes in Discovery Platform. In: Protein-Protein and Domain-Domain Interactions. Springer. 10.1007/978-981-10-7347-2_17
  • Khalid, A., Zaheer-Ul-Haq, Anjum, S., Khan, M., Atta-Ur-Rahman., & Choudhary, M. (2004). Kinetics and structure–activity relationship studies on pregnane-type steroidal alkaloids that inhibit cholinesterases. Bioorganic & Medicinal Chemistry, 12(9), 1995–2003. 10.1016/j.bmc.2004.03.002
  • Khan, M., Fuskevåg, O.-M., & Sylte, I. (2009). Discovery of potent thermolysin inhibitors using structure based virtual screening and binding assays. Journal of Medicinal Chemistry, 52(1), 48–61. 10.1021/jm8008019
  • Kryger, G., Silman, I., & Sussman, J. (1999). Structure of acetylcholinesterase complexed with E2020 (Aricept): Implications for the design of new anti-Alzheimer drugs. Structure, 7(3), 297–307. 10.1016/S0969-2126(99)80040-9
  • Liu, S.-J., Cui, L.-B., Xu, H.-L., Wang, T.-Y., Hu, C., Li, S., Lin, H.-Q., & Wan, D. (2013). Design, synthesis, and biological evaluation of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives as dual binding site acetylcholinesterase inhibitors. HETEROCYCLES, 87(12), 2607–2614. 10.3987/COM-13-12820
  • Liu, S., Shang, R., Shi, L., Wan, D., & Lin, H. (2014). Synthesis and biological evaluation of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives as dual binding site acetylcholinesterase inhibitors. European Journal of Medicinal Chemistry, 81, 237–244. 10.1016/j.ejmech.2014.05.020
  • Liu, S.-J., Yang, L., Jin, Z., Huang, E.-F., Wan, D., Lin, H.-Q., & Chun, H. (2009). Design, synthesis, and biological evaluation of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives as novel acetylcholinesterase inhibitors. ARKIVOC, 2009(10), 333–348. 10.3998/ark.5550190.0010.a30
  • Liu, S.-J., Yang, L., Liu, X.-G., Luo, Y., Cao, Z.-J., Wan, D., Lin, H.-Q., & Hu, C. (2010). Design, synthesis, and biological evaluation of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives as acetylcholinesterase inhibitors. Letters in Drug Design & Discovery, 7(1), 5–8. 10.2174/157018010789869343
  • Malinak, D., Dolezal, R., Hepnarova, V., Hozova, M., Andrys, R., Bzonek, P., Racakova, V., Korabecny, J., Gorecki, L., Mezeiova, E., Psotka, M., Jun, D., Kuca, K., & Musilek, K. (2020). Synthesis, in vitro screening and molecular docking of isoquinolinium-5-carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 478–488. 10.1080/14756366.2019.1710501
  • Marvel, C., & Schertz, G. (1943). Copolymers of p-chlorostyrene and methyl methacrylate. Journal of the American Chemical Society, 65(11), 2054–2058. 10.1021/ja01251a006
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55–63. 10.1016/0022-1759(83)90303-4
  • Muñoz-Ruiz, P., Rubio, L., García-Palomero, E., Dorronsoro, I., del Monte-Millán, M., Valenzuela, R., Usán, P., de Austria, C., Bartolini, M., Andrisano, V., Bidon-Chanal, A., Orozco, M., Luque, F., Medina, M., & Martínez, A. (2005). Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: New disease-modifying agents for Alzheimer’s disease. Journal of Medicinal Chemistry, 48(23), 7223–7233. 10.1021/jm0503289
  • National Medical Products Administration. The National Medical Products Administration conditional approved GV-971 as the mild to moderate Alzheimer’s disease drug. [2019-11-09]. http://www.nmpa.gov.cn/WS04/CL2056/359779.html
  • Neto, D., Lima, J., de Almeida, J., França, T., Nascimento, C., & Villar, J. (2018). New semicarbazones as gorge-spanning ligands of acetylcholinesterase and potential new drugs against Alzheimer’s disease: Synthesis, molecular modeling, NMR, and biological evaluation. Journal of Biomolecular Structure and Dynamics, 36(15), 4099–4113. 10.1080/07391102.2017.1407676
  • Pascoini, A. L., Federico, L. B., Arêas, A. L. F., Verde, B. A., Freitas, P. G., & Camps, I. (2019). In silico development of new acetylcholinesterase inhibitors. Journal of Biomolecular Structure and Dynamics, 37(4), 1007–1021. 10.1080/07391102.2018.1447513
  • Polinsky, R. (1998). Clinical pharmacology of rivastigmine: A new-generation acetylcholinesterase inhibitor for the treatment of alzheimer’s disease. Clinical Therapeutics, 20(4), 634–647. 10.1016/S0149-2918(98)80127-6
  • Raves, M., Harel, M., Pang, Y.-P., Silman, I., Kozikowski, A., & Sussman, J. (1997). Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-huperzine A. Nature Structural & Molecular Biology, 4(1), 57–63. 10.1038/nsb0197-57
  • Rego, A., & Oliveira, C. (2003). Mitochondrial disfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochemical Research, 28(10), 1563–1574. 10.1023/A:1025682611389
  • Shamsi, A., Al Shahwan, M., Ahamad, S., Hassan, M. I., Ahmad, F., & Islam, A. (2020). Spectroscopic, calorimetric and molecular docking insight into the interaction of Alzheimer’s drug donepezil with human transferrin: Implications of Alzheimer’s drug. Journal of Biomolecular Structure and Dynamics, 38(4), 1094–1102. 10.1080/07391102.2019.1595728
  • Shiri, F., Pirhadi, S., & Ghasemi, J. B. (2019). Dynamic structure based pharmacophore modeling of the Acetylcholinesterase reveals several potential inhibitors. Journal of Biomolecular Structure and Dynamics, 37(7), 1800–1812. 10.1080/07391102.2018.1468281
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. 10.1021/ct900587b
  • Śledź, P., & Caflisch, A. (2018). Protein structure-based drug design: From docking to molecular dynamics. Current Opinion in Structural Biology, 48, 93–102. 10.1016/j.sbi.2017.10.010
  • Sussman, J., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., & Silman, I. (1991). Atomic structure of acetyl-cholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science, 253(5022), 872–879. 10.1126/science.1678899
  • Taft, C., da Silva, V., & da Silva, C. (2008). Current topics in computer‐aided drug design. Journal of Pharmaceutical Sciences, 97(3), 1089–1098. 10.1002/jps.21293
  • Tahtaci, H., Karacık, H., Ece, A., Er, M., & Şeker, M. (2018). Design, synthesis, SAR and molecular modeling studies of novel imidazo. Molecular Informatics, 37(3), 1700083. 10.1002/minf.201700083
  • Vaqué, M., Ardévol, A., Bladé, C., Salvadó, M., Blay, M., Fernández-Larrea, J., Arola, L., & Pujadas, G. (2008). Protein-ligand docking: A review of recent advances and future perspectives. Current Pharmaceutical Analysis, 4(1), 1–19. 10.2174/157341208783497597
  • Wan, Y.-F., Guan, S.-S., Qian, M.-D., Huang, H.-H., Han, F., Wang, S., & Zhang, H. (2020). Structural basis of fullerene derivatives as novel potent inhibitors of protein acetylcholinesterase without catalytic active site interaction: insight into the inhibitory mechanism through molecular modeling studies. Journal of Biomolecular Structure and Dynamics, 38(2), 410–425. 10.1080/07391102.2019.1576543
  • Wang, M., Li, W., Wang, Y., Song, Y., Wang, J., & Cheng, M. (2018). In silico insight into voltage-gated sodium channel 1.7 inhibition for anti-pain drug discovery. Journal of Molecular Graphics and Modelling, 84, 18–28. 10.1016/j.jmgm.2018.05.006
  • Xu, H., Jin, Z., Liu, S., Liu, H., Li, S., Lin, H., Wan, D., & Hu, C. (2012). Design, synthesis characterization and in vitro biological activity of a series of 3-aryl-6-(bromoarylmethyl)-7H-thiazolo[3,2-b]-1, 2, 4-triazin-7-one derivatives as the novel acetylcholinesterase inhibitors. Chinese Chemical Letters, 23(7), 765–768. 10.1016/j.cclet.2012.04.022
  • Yang, S. Y. (2010). Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discovery Today., 15(11-12), 444–450. 10.1016/j.drudis.2010.03.013
  • Zheng, H., Fridkin, M., & Youdim, M. B. (2010). Site-activated chelators derived from anti-Parkinson drug rasagiline as a potential safer and more effective approach to the treatment of Alzheimer’s disease. Neurochemical Research, 35(12), 2117–2123. 10.1007/s11064-010-0293-1
  • Zhu, J., Wang, Y., Li, X., Han, W., & Zhao, L. (2017). Understanding the interactions of different substrates with wild-type and mutant acylaminoacyl peptidase using molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 36(16), 1–43. 10.1080/07391102.2017.1414634

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.