13,386
Views
184
CrossRef citations to date
0
Altmetric
Review Articles

A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin

, , , , , , , , ORCID Icon, , , & show all
Pages 3025-3033 | Received 19 Mar 2020, Accepted 06 Apr 2020, Published online: 22 Apr 2020

References

  • Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12(3), 254. 10.3390/v12030254
  • Amer, H., Alqahtani, A. S., Alaklobi, F., Altayeb, J., & Memish, Z. A. (2018). Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): Revision of screening strategies urgently needed. International Journal of Infectious Diseases, 71, 113–116. 10.1016/j.ijid.2018.04.001
  • Baron, S. A., Devaux, C., Colson, P., Raoult, D., & Rolain, J.-M. (2020). Teicoplanin: An alternative drug for the treatment of coronavirus COVID-19? International Journal of Antimicrobial Agents, 5, 105944. 10.1016/j.ijantimicag.2020.105944
  • Basak, A., Mitra, A., Basak, S., Pasko, C., Chrétien, M., & Seaton, P. (2007). A fluorogenic peptide containing the processing site of human SARS corona virus S‐protein: Kinetic evaluation and NMR structure elucidation. ChemBioChem, 8(9), 1029–1037. 10.1002/cbic.200700007
  • Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011–1033.
  • Bergeron, E., Vincent, M. J., Wickham, L., Hamelin, J., Basak, A., Nichol, S. T., Chrétien, M., & Seidah, N. G. (2005). Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochemical and Biophysical Research Communications, 326(3), 554–563. 10.1016/j.bbrc.2004.11.063
  • Bernstein, D. I., Guptill, J., Naficy, A., Nachbagauer, R., Berlanda-Scorza, F., Feser, J., Wilson, P. C., Solórzano, A., Van der Wielen, M., Walter, E. B., Albrecht, R. A. (2020). Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: Interim results of a randomised, placebo-controlled, phase 1 clinical trial. The Lancet Infectious Diseases, 20(1), 80–91. 10.1016/S1473-3099(19)30393-7
  • Braun, E., & Sauter, D. (2019). Furin‐mediated protein processing in infectious diseases and cancer. Clinical & Translational Immunology, 8(8), e1073. 10.1002/cti2.1073
  • Chen, Y., Guo, Y., Pan, Y., & Zhao, Z. J. (2020). Structure analysis of the receptor binding of SARS-CoV-2. Biochemical and Biophysical Research Communications, 525(1), 135–140. 10.1016/j.bbrc.2020.02.071
  • Cong, Y., Ulasli, M., Schepers, H., Mauthe, M., V’kovski, P., Kriegenburg, F., Thiel, V., de Haan, C. A. M., & Reggiori, F. (2019). Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. Journal of Virology, 94(4), 1-10. 10.1128/JVI.01925-19
  • Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N., & Decroly, E. (2020). The spike glycoprotein of the new coronavirus SARS-CoV-2 contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research, 176, 104742. 10.1016/j.antiviral.2020.104742
  • Dahms, S. O., Jiao, G.-S., & Than, M. E. (2017). Structural studies revealed active site distortions of human furin by a small molecule inhibitor. ACS Chemical Biology, 12(5), 1211–1216. 10.1021/acschembio.6b01110
  • Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., & Jiang, S. (2017). MERS-CoV spike protein: A key target for antivirals. Expert Opinion on Therapeutic Targets, 21(2), 131–143. 10.1080/14728222.2017.1271415
  • Fang, L., Karakiulakis, G., & Roth, M. (2020). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine, 8(4), e21. 10.1016/S2213-2600(20)30116-8
  • Gurwitz, D. (2020). Angiotensin receptor blockers as tentative SARS‐CoV‐2 therapeutics. Drug Development Research, 1, 1–10. 10.1002/ddr.21656
  • Heald-Sargent, T., & Gallagher, T. (2012). Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses, 4(4), 557–580. 10.3390/v4040557
  • Heymann, D. L., & Shindo, N. (2020). COVID-19: What is next for public health? The Lancet, 395(10224), 542–545. 10.1016/S0140-6736(20)30374-3
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 1, 1–10. 10.1016/j.cell.2020.02.052
  • Huang, I.-C., Bailey, C. C., Weyer, J. L., Radoshitzky, S. R., Becker, M. M., Chiang, J. J., Brass, A. L., Ahmed, A. A., Chi, X., Dong, L., Longobardi, L. E., Boltz, D., Kuhn, J. H., Elledge, S. J., Bavari, S., Denison, M. R., Choe, H., & Farzan, M. (2011). Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathogens, 7(1), e1001258. 10.1371/journal.ppat.1001258
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. 10.1016/S0140-6736(20)30183-5
  • Hulswit, R. J. G., Lang, Y., Bakkers, M. J. G., Li, W., Li, Z., Schouten, A., Ophorst, B., van Kuppeveld, F. J. M., Boons, G.-J., Bosch, B.-J., Huizinga, E. G., & de Groot, R. J. (2019). Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proceedings of the National Academy of Sciences, 116(7), 2681–2690. 10.1073/pnas.1809667116
  • Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T., Leong-Poi, H., Crackower, M. A., Fukamizu, A., Hui, C.-C., Hein, L., Uhlig, S., Slutsky, A. S., Jiang, C., & Penninger, J. M. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436(7047), 112–116. 10.1038/nature03712
  • Jaimes, J. A., Millet, J. K., Goldstein, M. E., Whittaker, G. R., & Straus, M. R. (2019). A fluorogenic peptide cleavage assay to screen for proteolytic activity: Applications for coronavirus spike protein activation. Journal of Visualized Experiments, 143, e58892. 10.3791/58892
  • Jaimes, J. A., & Whittaker, G. R. (2018). Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology, 517, 108–121. 10.1016/j.virol.2017.12.027
  • Jiang, F., Deng, L., Zhang, L., Cai, Y., Cheung, C. W., & Xia, Z. (2020). Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). Journal of General Internal Medicine, 1, 1–5.
  • Kaufmann, S. H., Dorhoi, A., Hotchkiss, R. S., & Bartenschlager, R. (2018). Host-directed therapies for bacterial and viral infections. Nature Reviews Drug Discovery, 17(1), 35–56. 10.1038/nrd.2017.162
  • Khan, N., & Fahad, S. (2020). Critical review of the present situation of corona virus in China. Available at SSRN 3543177.
  • Kim, Y., Cheon, S., Min, C.-K., Sohn, K. M., Kang, Y. J., Cha, Y.-J., Kang, J.-I., Han, S. K., Ha, N.-Y., Kim, G., Aigerim, A., Shin, H. M., Choi, M.-S., Kim, S., Cho, H.-S., Kim, Y.-S., & Cho, N.-H. (2016). Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak. mBio, 7(2), e00019–00016. 10.1128/mBio.00019-16
  • Kim, W., Zekas, E., Lodge, R., Susan-Resiga, D., Marcinkiewicz, E., Essalmani, R., Mihara, K., Ramachandran, R., Asahchop, E., Gelman, B., Cohen, É. A., Power, C., Hollenberg, M. D., & Seidah, N. G. (2015). Neuroinflammation-induced interactions between protease-activated receptor 1 and proprotein convertases in HIV-associated neurocognitive disorder. Molecular and Cellular Biology, 35(21), 3684–3700. 10.1128/MCB.00764-15
  • Kleine-Weber, H., Elzayat, M. T., Wang, L., Graham, B. S., Müller, M. A., Drosten, C., Pöhlmann, S., & Hoffmann, M. (2018). Mutations in the spike protein of Middle East respiratory syndrome coronavirus transmitted in Korea increase resistance to antibody-mediated neutralization. Journal of Virology, 93(2), e01381–01318. 10.1128/JVI.01381-18
  • Kong, R., Yang, G., Xue, R., Liu, M., Wang, F., Hu, J., Guo, X., & Chang, S. (2020). COVID-19 Docking Server: An interactive server for docking small molecules, peptides and antibodies against potential targets of COVID-19. arXiv Preprint arXiv:2003.00163, 1, 1–10.
  • Koopman, G., Mortier, D., Michels, S., Hofman, S., Fagrouch, Z., Remarque, E. J., Verschoor, E. J., Mooij, P., & Bogers, W. M. J. M. (2019). Influenza virus infection as well as immunization with DNA encoding haemagglutinin protein induces potent antibody-dependent phagocytosis (ADP) and monocyte infection-enhancing responses in macaques. Journal of General Virology, 100(5), 738–751. 10.1099/jgv.0.001251
  • Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Yang, P., Zhang, Y., Deng, W., Bao, L. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Medicine, 11(8), 875–879. 10.1038/nm1267
  • Lai, J. C. C., Karunarathna, H. M., Wong, H. H., Peiris, J. S., & Nicholls, J. M. (2019). Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding. Emerging Microbes & Infections, 8(1), 327–338. 10.1080/22221751.2019.1581034
  • Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., & Hsueh, P.-R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. 10.1016/j.ijantimicag.2020.105924
  • Letko, M. C., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including SARS-CoV-2. bioRxiv, 1, 1–10.
  • Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. 10.1146/annurev-virology-110615-042301
  • Licitra, B. N., Millet, J. K., Regan, A. D., Hamilton, B. S., Rinaldi, V. D., Duhamel, G. E., & Whittaker, G. R. (2013). Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerging Infectious Diseases, 19(7), 1066–1073. 10.3201/eid1907.121094
  • Li, K., Li, H., Bi, Z., Song, D., Zhang, F., Lei, D., Luo, S., Li, Z., Gong, W., Huang, D., Ye, Y., & Tang, Y. (2019). Significant inhibition of re-emerged and emerging swine enteric coronavirus in vitro using the multiple shRNA expression vector. Antiviral Research, 166, 11–18. 10.1016/j.antiviral.2019.03.010
  • Li, C., Li, W., Lucio de Esesarte, E., Guo, H., van den Elzen, P., Aarts, E., van den Born, E., Rottier, P. J. M., & Bosch, B.-J. (2017). Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies. Journal of Virology, 91(12), e00273–00217. 10.1128/JVI.00273-17
  • Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450–454. 10.1038/nature02145
  • Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklöv, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine, 27(2), 1-10. 10.1093/jtm/taaa021
  • Li, W., Wicht, O., van Kuppeveld, F. J., He, Q., Rottier, P. J., & Bosch, B.-J. (2015). A single point mutation creating a furin cleavage site in the spike protein renders porcine epidemic diarrhea coronavirus trypsin independent for cell entry and fusion. Journal of Virology, 89(15), 8077–8081. 10.1128/JVI.00356-15
  • Li, X. C., Zhang, J., & Zhuo, J. L. (2017). The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacological Research, 125, 21–38. 10.1016/j.phrs.2017.06.005
  • Li, Y.-H., Gao, H., Xiao, Y., Weng, T., Yu, D., Hu, C., Yao, H. P., & Li, L.-J. (2018). Bioinformatics analysis on potential anti-viral targets against spike protein of MERS-CoV [Paper presentation]. Paper Presented at the 2018 9th International Conference on Information Technology in Medicine and Education (ITME). 10.1109/ITME.2018.00026
  • Lodermeyer, V., Suhr, K., Schrott, N., Kolbe, C., Stürzel, C. M., Krnavek, D., Münch, J., Dietz, C., Waldmann, T., Kirchhoff, F., & Goffinet, C. (2013). 90K, an interferon-stimulated gene product, reduces the infectivity of HIV-1. Retrovirology, 10(1), 111. 10.1186/1742-4690-10-111
  • Mathewson, A. C., Bishop, A., Yao, Y., Kemp, F., Ren, J., Chen, H., Xu, X., Berkhout, B., van der Hoek, L., & Jones, I. M. (2008). Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2. Journal of General Virology, 89(11), 2741–2745. 10.1099/vir.0.2008/003962-0
  • Memberships, M., & Join, T. (2020). Guidance on Coronavirus Disease 2019 (COVID-19) for Transplant Clinicians Updated 27 February 2020.
  • Menachery, V. D., Eisfeld, A. J., Schäfer, A., Josset, L., Sims, A. C., Proll, S., Fan, S., Li, C., Neumann, G., Tilton, S. C., Chang, J. (2014). Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. mBio, 5(3), e01174–01114. 10.1128/mBio.01174-14
  • Millet, J. K., & Whittaker, G. R. (2014). Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proceedings of the National Academy of Sciences, 111(42), 15214–15219. 10.1073/pnas.1407087111
  • Millet, J. K., & Whittaker, G. R. (2015). Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research, 202, 120–134.
  • Papadopoulos, N. G., Megremis, S., Kitsioulis, N. A., Vangelatou, O., West, P., & Xepapadaki, P. (2017). Promising approaches for the treatment and prevention of viral respiratory illnesses. Journal of Allergy and Clinical Immunology, 140(4), 921–932. 10.1016/j.jaci.2017.07.001
  • Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W., & Haque, U. (2020). The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? International Journal of Epidemiology, pii, dyaa033. 10.1093/ije/dyaa033
  • Poon, L. L., & Peiris, M. (2020). Emergence of a novel human coronavirus threatening human health. Nature Medicine, 26(3), 317–312. 10.1038/s41591-020-0796-5
  • Porter, E., Tasker, S., Day, M. J., Harley, R., Kipar, A., Siddell, S. G., & Helps, C. R. (2014). Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis. Veterinary Research, 45(1), 49. 10.1186/1297-9716-45-49
  • Prabakaran, P., Xiao, X., & Dimitrov, D. S. (2004). A model of the ACE2 structure and function as a SARS-CoV receptor. Biochemical and Biophysical Research Communications, 314(1), 235–241. 10.1016/j.bbrc.2003.12.081
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56. 10.4103/ijp.IJP_115_20
  • Scamuffa, N., Calvo, F., Chrétien, M., Seidah, N. G., & Khatib, A.-M. (2006). Proprotein convertases: Lessons from knockouts. The FASEB Journal, 20(12), 1954–1963. 10.1096/fj.05-5491rev
  • Schaack, G. A., & Mehle, A. (2019). Experimental approaches to identify host factors important for influenza virus. Cold Spring Harbor Perspectives in Medicine, 1, a038521.
  • Senathilake, K., Samarakoon, S., & Tennekoon, K. (2020). Virtual screening of inhibitors against spike glycoprotein of 2019 novel corona virus: A drug repurposing approach. 1(1), 1–10.
  • Stebbing, J., Phelan, A., Griffin, I., Tucker, C., Oechsle, O., Smith, D., & Richardson, P. (2020). COVID-19: Combining antiviral and anti-inflammatory treatments. The Lancet Infectious Diseases, 20(4), 400–402. 10.1016/S1473-3099(20)30132-8
  • Struck, A.-W., Axmann, M., Pfefferle, S., Drosten, C., & Meyer, B. (2012). A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antiviral Research, 94(3), 288–296. 10.1016/j.antiviral.2011.12.012
  • Tang, J. W., Tambyah, P. A., & Hui, D. S. (2020). Emergence of a novel coronavirus causing respiratory illness from Wuhan, China. Journal of Infection, 80(3), 350–371. 10.1016/j.jinf.2020.01.014
  • Van Doremalen, N., Bushmaker, T., & Munster, V. (2013). Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance, 18(38), 20590. 10.2807/1560-7917.ES2013.18.38.20590
  • Veljkovic, V., Vergara-Alert, J., Segalés, J., & Paessler, S. (2020). Use of the informational spectrum methodology for rapid biological analysis of the novel coronavirus SARS-CoV-2: Prediction of potential receptor, natural reservoir, tropism and therapeutic/vaccine target. F1000Research, 9(52), 52. 10.12688/f1000research.22149.1
  • Vlasak, R., Luytjes, W., Spaan, W., & Palese, P. (1988). Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proceedings of the National Academy of Sciences, 85(12), 4526–4529. 10.1073/pnas.85.12.4526
  • Wong, S. K., Li, W., Moore, M. J., Choe, H., & Farzan, M. (2004). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. Journal of Biological Chemistry, 279(5), 3197–3201. 10.1074/jbc.C300520200
  • Xi, J., Xu, K., Jiang, P., Lian, J., Hao, S., Jia, H., Yao, H., Zhang, Y., Zheng, R., Chen, D., Yao, J., (2020). Virus strain of a mild COVID-19 patient in Hangzhou representing a new trend in SARS-CoV-2 evolution related to Furin cleavage site. medRxiv, 1, 1–10.
  • Xu, J., Yang, J., Chen, J., Luo, Q., Zhang, Q., & Zhang, H. (2017). Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Molecular Medicine Reports, 16(5), 7432–7438. 10.3892/mmr.2017.7546
  • Yamada, Y., & Liu, D. X. (2009). Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. Journal of Virology, 83(17), 8744–8758. 10.1128/JVI.00613-09
  • Yang, Y., Islam, M. S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. International Journal of Biological Sciences, 16(10), 1708–1717. 10.7150/ijbs.45538
  • Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., & Ziebuhr, J. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biology. 3(10), 1-10. 10.1371/journal.pbio.0030324
  • Yin, L., Zeng, Y., Wang, W., Wei, Y., Xue, C., & Cao, Y. (2016). Immunogenicity and protective efficacy of recombinant fusion proteins containing spike protein of infectious bronchitis virus and hemagglutinin of H3N2 influenza virus in chickens. Virus Research, 223, 206–212. 10.1016/j.virusres.2016.07.010
  • Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–585. 10.1007/s00134-020-05985-9
  • Zheng, J., & Perlman, S. (2018). Immune responses in influenza A virus and human coronavirus infections: An ongoing battle between the virus and host. Current Opinion in Virology, 28, 43–52. 10.1016/j.coviro.2017.11.002
  • Zhou, G., & Zhao, Q. (2020). Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. International Journal of Biological Sciences, 16(10), 1718–1723. 10.7150/ijbs.45123
  • Zmora, P., Hoffmann, M., Kollmus, H., Moldenhauer, A.-S., Danov, O., Braun, A., Winkler, M., Schughart, K., & Pöhlmann, S. (2018). TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1. Journal of Biological Chemistry, 293(36), 13863–13873. 10.1074/jbc.RA118.001273
  • Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology, 1, 200490.
  • Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K.-Y. (2016). Coronaviruses—Drug discovery and therapeutic options. Nature Reviews Drug Discovery, 15(5), 327–347. 10.1038/nrd.2015.37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.