195
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Protein dynamics and molecular motions study in relation to molecular interaction between proteins from sulfur oxidizing proteobacteria Allochromatium vinosum

&
Pages 2771-2787 | Received 05 Nov 2019, Accepted 06 Apr 2020, Published online: 06 May 2020

References

  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. doi:10.1002/prot.340170408
  • Amadei, A., Linssen, A. B., de Groot, B. L., van Aalten, D. M., & Berendsen, H. J. (1996). An efficient method for sampling the essential subspace of proteins. Journal of Biomolecular Structure & Dynamics, 13(4), 615–625. doi:10.1080/07391102.1996.10508874
  • Bahar, I., Atilgan, A. R., Demirel, M. C., & Erman, B. (1998). Vibrational dynamics of folded proteins: Significance of slow and fast motions in relation to function andstability. Physical Review Letters, 80(12), 2733–2736. doi:10.1103/PhysRevLett.80.2733
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics., 81(8), 3684–3690. doi:10.1063/1.448118
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. doi:10.1021/j100308a038
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy minimization and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217. doi:10.1002/jcc.540040211
  • Chen, R., & Weng, Z. (2002). Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins: Structure, Function, and Genetics, 47(3), 281–294. doi:10.1002/prot.10092
  • Chen, R., & Weng, Z. (2003). A novel shape complementarity scoring function for protein-protein docking. Proteins: Structure, Function, and Genetics, 51(3), 397–408. doi:10.1002/prot.10334
  • Cort, J. R., Mariappan, S. V., Kim, C. Y., Park, M. S., Peat, T. S., Waldo, G. S., Terwilliger, T. C., & Kennedy, M. A. (2001). Solution structure of Pyrobaculum aerophilum DsrC, an archaeal homologue of the gamma subunit of dissimilatory sulfite reductase. European Journal of Biochemistry, 268(22), 5842–5850. doi:10.1046/j.0014-2956.2001.02529.x
  • Cort, J. R., Selan, U., Schulte, A., Grimm, F., Kennedy, M. A., & Dahl, C. (2008). Allochromatium vinosum DsrC: Solution-state NMR structure, redox properties and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. Journal of Molecular Biology., 382(3), 692–707. doi:10.1016/j.jmb.2008.07.022
  • Dahl, C., Engels, S., Pott-Sperling, A. S., Schulte, A., Sander, J., LüBbe, Y., Deuster, O., & Brune, D. C. (2005). Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. Journal of Bacteriology, 187(4), 1392–1404. doi:10.1128/JB.187.4.1392-1404.2005
  • Dahl, C., Franz, B., Hensen, D., Kesselheim, A., & Zigann, R. (2013). Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: Identification of SoeABC as a major player and relevance of SoxYZ in the process. Microbiology, 159(Pt_12), 2626–2638. doi:10.1099/mic.0.071019-0
  • de Vries, S. J., van Dijk, M., & Bonvin, A. M. J. J. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883–897. doi:10.1038/nprot.2010.32
  • Dominguez, C., Boelens, R., & Bonvin, A. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. doi:10.1021/ja026939x
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., Pedersen, L. G., et. al. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics., 103(19), 8577–8593. doi:10.1063/1.470117
  • Frauenfelder, H., Sligar, S. G., & Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science (New York, N.Y.).), 254(5038), 1598–1603. doi:10.1126/science.1749933
  • Frigaard, N., & Dahl, C. (2009). Sulfur metabolism in phototrophic sulfur bacteria. In: Robert Poole K. (Ed.), Advances in microbial physiology (Vol. 54, pp. 103–200). Academic Press.
  • Ghosh, S., & Bagchi, A. (2018). Insight into the molecular mechanism of the sulfur oxidation process by reverse sulfite reductase (rSiR) from sulfur oxidizer Allochromatium vinosum. J. of Mol. Modeling, 24, 117. doi:10.1007/s00894-018-3652-5
  • Ghosh, S., & Bagchi, A. (2019). Structural study to analyze the DNA-binding properties of DsrC protein from the dsr operon of sulfur-oxidizing bacterium Allochromatium vinosum. J. of Mol. Modeling, 25, 74. doi:10.1007/s00894-019-3945-3
  • Ghosh, S., & Bagchi, A. (2015). Comparative analysis of the mechanisms of sulfur anion oxidation and reduction by dsr operon to maintain environmental sulfur balance. Computational Biology and Chemistry., 59, 177–184. doi:10.1016/j.compbiolchem.2015.07.001
  • Grein, F. (2010). Biochemical, biophysical and functional analysis of the DsrMKJOP transmembrane complex from Allochromatium vinosum [PhD thesis]. Rhenish Friedrich Wilhelm University.
  • Grein, F., Pereira, I. A. C., & Dahl, C. (2010a). Biochemical characterization of individual components of the Allochromatium vinosum DsrMKJOP transmembrane complex aids understanding of complex function in vivo. Journal of Bacteriology, 192(24), 6369–6377. doi:10.1128/JB.00849-10
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. doi:10.1021/ct700200b
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient load-balanced and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi:10.1021/ct700301q
  • Hsieh, Y. C., Liu, M. Y., Wang, V. C., Chiang, Y. L., Liu, E. H., Wu, W. G., Chan, S. I., & Chen, C. J. (2010). Structural insights into the enzyme catalysis from comparison of three forms of dissimilatory sulphite reductase from Desulfovibrio gigas. Molecular Microbiology, 78(5), 1101–1116. doi:10.1111/j.1365-2958.2010.07390.x
  • Hünenberger, P. H., Mark, A. E., & van Gunsteren, W. F. (1995). Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. Journal of Molecular Biology., 252(4), 492–503. doi:10.1006/jmbi.1995.0514
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. doi:10.1002/bip.360221211
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. doi:10.1038/nprot.2016.169
  • Lübbe, Y. J., Youn, H.-S., Timkovich, R., & Dahl, C. (2006). Siro (haem) amide in Allochromatium vinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a, c-diamide synthase, for sulphur oxidation. FEMS Microbiology Letters, 261(2), 194–202. doi:10.1111/j.1574-6968.2006.00343.x
  • Mander, G. J., Weiss, M. S., Hedderich, R., Kahnt, J., Ermler, U., & Warkentin, E. (2005). X-ray structure of the gamma-subunit of a dissimilatory sulfite reductase: Fixed and flexible C-terminal arms. FEBS Letters, 579(21), 4600–4604. doi:10.1016/j.febslet.2005.07.029
  • Manoharan, P., & Ghoshal, N. (2018). Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads. Journal of Biomolecular Structure and Dynamics., 36(7), 1878–1892. doi:10.1080/07391102.2017.1337590
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298K. The Journal of Physical Chemistry A, 105(43), 9954–9960. doi:10.1021/jp003020w
  • Oliveira, T. F., Franklin, E., Afonso, J. P., Khan, A. R., Oldham, N. J., Pereira, I. A. C., & Archer, M. (2011). Structural insights into dissimilatory sulphite reductases: Structure of desulforubidin from Desulfomicrobium norvegicum. Frontiers in Microbiology, 2, 71. doi:10.3389/fmicb.2011.00071
  • Oliveira, T. F., Vonrhein, C., Matias, P. M., Venceslau, S. S., Pereira, I. A. C., & Archer, M. (2008). The Crystal Structure of Desulfovibrio vulgaris Dissimilatory Sulfite Reductase Bound to DsrC Provides Novel Insights Into the Mechanism of Sulfate Respiration. Journal of Biological Chemistry, 283(49), 34141–34149. doi:10.1074/jbc.M805643200
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics., 52(12), 7182–7190. doi:10.1063/1.328693
  • Paul, D. M., Chadah, T., Senthilkumar, B., Sethumadhavan, R., & Rajasekaran, R. (2018). Structural distortions due to missense mutations in human formylglycine generating enzyme leading to multiple sulfatase deficiency. Journal of Biomolecular Structure and Dynamics., 36(13), 3575–3585. doi:10.1080/07391102.2017.1394220
  • Pierce, B., & Weng, Z. (2007). ZRANK: Reranking protein docking predictions with an optimized energy function. Proteins: Structure, Function, and Bioinformatics, 67(4), 1078–1086. doi:10.1002/prot.21373
  • Sanchez, O., Ferrera, I., Dahl, C., & Mas, J. (2001). In vivo role of APS reductase in the purple sulfur bacterium Allochromatium vinosum. Archives of Microbiology., 176(4), 301–305. doi:10.1007/s002030100327
  • Sander, J., Engels-Schwarzlose, S., & Dahl, C. (2006). Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes. Archives of Microbiology, 186(5), 357–366. doi:10.1007/s00203-006-0156-y
  • Schiffer, A., Parey, K., Warkentin, E., Diederichs, K., Huber, H., Stetter, K. O., Kroneck, P. M. H., & Ermler, U. (2008). Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. Journal of Molecular Biology., 379(5), 1063–1074. doi:10.1016/j.jmb.2008.04.027
  • Shen, H., Sun, H., & Li, G. (2012). What is the role of motif D in the nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus? PLoS Computational Biology, 8(12), e1002851. doi:10.1371/journal.pcbi.1002851
  • Singh, A., Das, M., & Grover, A. (2020). Molecular mechanism of acetoacetyl-CoA enhanced kinetics for increased bioplastic production from Cupriavidus necator 428. Journal of Biomolecular Structure and Dynamics., 38(3), 827–840. doi:10.1080/07391102.2019.1590239.
  • Stockdreher, Y., Venceslau, S. S., Josten, M., Sahl, H.-G., Pereira, I. A. C., & Dahl, C. (2012). Cytoplasmic sulfur transferases in the purple sulfur bacterium Allochromatium vinosum: Evidence for sulfur transfer from DsrEFH to DsrC. PLoS One., 7(7), e40785. doi:10.1371/journal.pone.0040785
  • Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: Protein interactions calculator. Nucleic Acids Research., 35(Web Server), W473–W476. doi:10.1093/nar/gkm423
  • Tournier, A. L., & Smith, J. C. (2003). Principal components of the protein dynamical transition. Physical Review Letters, 91(20), 208106. doi:10.1103/PhysRevLett.91.208106
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins: Structure, Function, and Bioinformatics, 85(3), 435–444. doi:10.1002/prot.25219
  • Vijayakumar, S., & Das, P. (2019). Structural, molecular motions and free-energy landscape of Leishmania sterol-14α-demethylase wild type and drug resistant mutant: A comparative molecular dynamics study. Journal of Biomolecular Structure and Dynamics., 37(6), 1477–1493. doi:10.1080/07391102.2018.1461135
  • Yang, L., Chen, G., Li, Y., Zhang, R., Liu, S., & Sang, P. (2019). Insight derived from molecular dynamics simulation into dynamics and molecular motions of cuticle-degrading serine protease Ver112. Journal of Biomolecular Structure and Dynamics., 37(8), 2004–2016. doi:10.1080/07391102.2018.1471418

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.