390
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Magnetite Fe3O4 surface as an effective drug delivery system for cancer treatment drugs: density functional theory study

&
Pages 2798-2805 | Received 01 Feb 2020, Accepted 07 Apr 2020, Published online: 21 Apr 2020

References

  • Allen, F. H. (2002). The cambridge structural database: A quarter of a million crystal structures and rising. Acta Crystallographica Section B Structural Science, 58(3), 380–388. doi:10.1107/S0108768102003890
  • Arum, Y., Oh, Y., Wook Kang, H., Ahn, S., & Oh, J. (2015). Chitosan-coated Fe3O4 magnetic nanoparticles as carrier of Cisplatin for drug delivery. Fisheries and Aquatic Science., 18(1), 89–98. doi:10.5657/FAS.2015.0089
  • Brollo, M. E. F., Orozco-Henao, J. M., López-Ruiz, R., Muraca, D., Dias, C. S. B., Pirota, K. R., & Knobel, M. (2016). Magnetic hyperthermiain brick-likeAg@Fe3O4 core–shell nanoparticles. Journal of Magnetism and Magnetic Materials, 397, 20–27. doi:10.1016/j.jmmm.2015.08.081
  • Brymora, K., & Calvayrac, F. (2013). Ligand effects on the electronic structure and magnetism of magnetite surfaces. Bulletin of the American Physical Society, 58. arXiv:1205.1842v1
  • Cheng, K., Peng, S., Xu, C., & Sun, S. (2009). Porous Hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. Journal of the American Chemical Society, 131(30), 10637–10644. doi:10.1021/ja903300f
  • Dans, P., Crespo, A. D., Estrin, D., & Coitiño, E. L. (2008). Structural and energetic study of cisplatin and derivatives comparison of the performance of density funtional theory implementations. Journal of Chemical Theory and Computation, 4(5), 740–750. doi:10.1021/ct7002385
  • Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 740, 364–378. doi:10.1016/j.ejphar.2014.07.025
  • Dorniani, D., Bin Hussein, M. Z., Kura, A. U., Fakurazi, S., Shaari, A. H., & Ahmad, Z. (2012). Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. International Journal of Nanomedicine, 7, 5745–5756. doi:10.2147/IJN.S35746
  • Dorniani, D., Zobir bin Hussein, M., Umar Kura, A., Fakurazi, S., Shaari, A. H., & Ahmad, Z. (2013). Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system. Drug Design, Development and Therapy, 7, 1015–1026. doi:10.2147/DDDT.S43035
  • Garcia-Jimeno, S., Ortega-Palacios, R., Cepeda-Rubio, M., Vera, A., Leija, L., & Estelrich, J. (2012). Improved thermal ablation efficacy using magnetic nanoparticles: A study in tumor phantoms. Progress in Electromagnetics Research, 128, 229–248. doi:10.2528/PIER12020108
  • Gilks, D., Lari, L., Matsuzaki, K., Evans, R., McKenna, K., Susaki, T., & Lazarov, V. K. (2014). A STEM study of twin defects in Fe3O4(111)/YZO(111). Journal of Physics: Conference Series, 522, 012036. doi:10.1088/1742-6596/522/1/012036
  • Hammad, M., Nica, V., & Hempelmann, R. (2017). On-command controlled drug release by diels-Alder reaction using Bi-magnetic core/shell nano-carriers. Colloids and Surfaces B: Biointerfaces, 150, 15–22. doi:10.1016/j.colsurfb.2016.11.005
  • Hazrati, M. K., Bagheri, Z., & Bodaghi, A. (2017). Application of C30B15N15 heterofullerene in the isoniazid drug delivery: DFT studies. Physica E: Low-Dimensional Systems and Nanostructures, 89, 72–76. doi:10.1016/j.physe.2017.02.009
  • Hergt, R., Dutz, S., M¨Uller, R., & Zeisberger, M. (2006). Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Condensed Matter, 18(38), S2919–S2934. doi:10.1088/0953-8984/18/38/S26
  • Huang, D. J., Lin, H. J., Okamoto, J., Chao, K., Jeng, H. T., Guo, G., Hsu, C. H., Huang, C. M., Ling, D. C., Wu, W. B., Yang, C. S., & Chen, C. T. (2006). Charge-orbital ordering and Verwey transition in magnetite measured by resonant soft X-ray scattering. Physical Review Letters, 96(9), 487. doi:10.1103/PhysRevLett.96.096401
  • Kalra, S., Jena, G., Tikoo., & Mukhopadhyay, A. (2007). Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine thiol. BMC Biochemistry, 8(1), 8. doi:10.1186/1471-2091-8-8
  • Kappiyoor, R., Liangruksa, M., Ganguly, R., & Puri, I. K. (2010). The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia. Journal of Applied Physics, 108(9), 094702. doi:10.1063/1.3500337
  • Khorram, R., Raissi, H., Morsali, A., & Shahabi, M. (2019). The computational study of the γ-Fe2O3 nanoparticle as carmustine drug delivery system: DFT approach. Journal of Biomolecular Structure and Dynamics , 37(2), 454–464. doi:10.1080/07391102.2018.1429312
  • Kobayashi, T. (2011). Cancer hyperthermia using magnetic nanoparticles. Biotechnology Journal., 6(11), 1342–1347. doi:10.1002/biot.201100045
  • Kostiv, U., Patsula, V., Šlouf, M., Pongrac, I. M., Škokić, S., Radmilović, M. D., Pavičić, I., Vrček, I. V., Gajović, S., & Horák, D. (2017). Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4&SiO2 core–shell nanoparticles. RSC Advances, 7(15), 8786–8797. doi:10.1039/C7RA00224F
  • Krishnan, K. M. (2010). Biomedical Nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Transactions on Magnetics, 46(7), 2523–2558. doi:10.1109/TMAG.2010.2046907
  • Kumar, C., & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63(9), 789–808. doi:10.1016/j.addr.2011.03.008
  • Lodziana, Z. (2007). Surface Verwey transition in magnetite. Physical Review Letters, 99(20), 206402doi:10.1103/PhysRevLett.99.206402
  • Lv, Y., Yang, Y., Fang, J., Zhang, H., Peng, E., Liu, X., Xiao, W., & Ding, J. (2015). Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles. RSC Advances, 5(94), 76764–76771. doi:10.1039/C5RA12558H
  • Medeiros, S. F., Santos, A. M., Fessi, H., & Elaissari, A. (2011). Stimuli-responsivemagnetic particle for biomedical application. International Journal of Pharmaceutics., 403(1-2), 139–161. doi:10.1016/j.ijpharm.2010.10.011
  • Michalska, D., Wysokinski, R., & C. Collect, C. (2004). Molecular structure and bonding in platinum-picoline anticancer complex: Density functional study. chem.commun, 69, 63–71. doi:10.1135/cccc20040063
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188–5192. doi:10.1103/PhysRevB.13.5188
  • Moustafa, M. E., Amin, A. S., & Magdi, Y. (2018). Cytotoxicity of 6-mercaptopurine via loading on pva-coated magnetite nanoparticles delivery system: A new era of leukemia therapy. Journal of Nanomedicine & Nanotechnology, 09(06), 521. doi:10.4172/2157-7439.1000521
  • Noei, M., Salari, A. A., Anaraki-Ardakani, H., Bavarsad, M., Mousaei, M. J., & Hashemi, M. (2012). Theoretical study of anticancer drug mercaptopurine structure by using quantum calculations. World Applied Sciences Journal, 20(9), 1252–1255.https://doi.org/ doi:10.5829/idosi.wasj.2012.20.09.856
  • Noh, J., Osman, O., Aziz, S., Winget, P., & Luc Brédas, J. (2014). A density functional theory investigation of the electronic structure and spin moments of magnetite. Science and Technology of Advanced Materials, 15(4), 044202. doi:10.1088/1468-6996/15/4/044202
  • Noh, J., Osman, O., Aziz, S., Winget, P., & Luc Brédas, J. (2015). Magnetite Fe3O4 (111) surfaces: Impact of defects on structure, stability, and electronic properties. Chemistry of Materials, 27(17), 5856–5867. −doi:10.1021/acs.chemmater.5b02885
  • Obaidat, I. M., Issa, B., & Haik, Y. (2015). Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials, 5(1), 63–89. doi:10.3390/nano5010063
  • Pankhurst, Q. A., Connolly, J., Jones, S. K., & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 36(13), R167–R181. doi:10.1088/0022-3727/36/13/201
  • Purushotham, S., & Ramanujan, R. V. (2010). Modeling the performance of magnetic nanoparticles in multimodal. Journal of Applied Physics, 107(11), 114701–114709. doi:10.1063/1.3432757
  • Rakhecha, V. C., & Murthy, N. S. (1978). Spin-transfer due to covalency for the tetrahedral-site Fe+3 ions in Fe3O4. Journal of Physics C: Solid State Physics, 11(21), 4389–4404. doi:10.1088/0022-3719/11/21/015
  • Roldan, A., Santos-Carballa, D., & de Leeuw, N. H. (2013). Comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4. The Journal of Chemical Physics, 138(20), 204712. doi:10.1063/1.4807614
  • Sahasranaman, S., Howard, D., & Roy, S. (2008). Clinical pharmacology and pharmacogenetics of thiopurines. European Journal of Clinical Pharmacology, 64(8), 753–767. PMID 18506437. doi:10.1007/s00228-008-0478-6
  • Santos-Carballal, D., Roldan, A., Grau-Crespo, R., & de Leeuw, N. H. (2014). A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe3O4, the royal society of chemistry. Physical Chemistry Chemical Physics., 16(39), 21082–21097. doi:10.1039/C4CP00529E
  • Sirivat, A., & Paradee, N. (2019). Facile synthesis of gelatin-coated Fe3O4 nanoparticle: Effect of pH in single-step co-precipitation for cancer drug loading. Materials & Design, 181, 107942. doi:10.1016/j.matdes.2019.107942
  • Subagyo, A., & Sueoka, K. (2007). Correlation between surface structure and charge ordering in magnetite (001) studied by scanning tunneling microscopy and spectroscopy. Journal of Physics: Conference Series, 61, 1102–1106. doi:10.1088/1742-6596/61/1/218
  • Swietach, P., Vaughan-Jones, R. D., Harris, A. L., & Hulikova, A. (2014). The chemistry, physiology and pathology of pH in cancer. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 369(1638), 20130099. 10.1098/rstb.2013.0099
  • Tao, K., Zhou, J., Sun, Q., Wang, Q., Stepanyuk, V. S., & Jena, P. (2014). Self-consistent determination of Hubbard U for explaining the anomalous magnetism of the Gd13cluster. Physical Review B, 89(8): 085103–9. doi:10.1103/PhysRevB.89.085103
  • Unterweger, H., Tietze, R., Janko, C., Zaloga, J., Lyer, S., Dürr, S., Taccardi, N., Goudouri, O. M., Hoppe, A., Eberbeck, D., Schubert, D. W., Boccaccini, A. R., & Alexiou, C. (2014). Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. International Journal of Nanomedicine, 9, 3659–3676. doi:10.2147/IJN.S63433
  • Wenzel, M., & Steinle-Neumann, G. (2007). Nonequivalence of the octahedral sites of cubic Fe3O4 magnetite. Physical Review B, 75(21), 214430. doi:10.1103/PhysRevB.75.214430
  • Wright, J. P., Attfield, J. P., & Radaelli, P. G. (2002). Charge ordered structure of magnetite Fe3O4 below the Verwey transition. Physical Review B, 66(21), 214422. doi:10.1103/PhysRevB.66.214422
  • Yang, T., Wen, X. D., Ren, J., Li, Y. W., Wang, J. G., & Huo, C. F. (2010). Surface structures of Fe3O4 (111), (110), and (001): A density functional theory study. Journal of Fuel Chemistry and Technology, 38(1), 121–128. doi:10.1016/S1872-5813(10)60024-2
  • Zhang, Z., & Satpathy, S. (1991). Electron states, magnetism, and the Verwey transition in magnetite. Physical Review B, 44(24), 13319–13331. doi:10.1103/PhysRevB.44.13319

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.