291
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative structure activity relationship and molecular simulations for the exploration of natural potent VEGFR-2 inhibitors: an in silico anti-angiogenic study

, , , &
Pages 2806-2823 | Received 27 Feb 2020, Accepted 07 Apr 2020, Published online: 04 May 2020

References

  • Adams, D. H., Ju, C., Ramaiah, S. K., Uetrecht, J., & Jaeschke, H. (2010). Mechanisms of immune-mediated liver injury. Toxicological Sciences, 115(2), 307–321. doi:10.1093/toxsci/kfq009
  • Al‐Husein, B., Abdalla, M., Trepte, M., DeRemer, D. L., & Somanath, P. R. (2012). Antiangiogenic therapy for cancer: An update. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 32(12), 1095–1111. doi:10.1002/phar.1147
  • Attia, S. M. (2010). Deleterious effects of reactive metabolites. Oxidative Medicine and Cellular Longevity, 3(4), 238–253. doi:10.4161/oxim.3.4.13246
  • Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. doi:10.1021/jm901137j
  • Dai, Y., Hartandi, K., Ji, Z., Ahmed, A. A., Albert, D. H., Bauch, J. L., Bouska, J. J., Bousquet, P. F., Cunha, G. A., Glaser, K. B., Harris, C. M., Hickman, D., Guo, J., Li, J., Marcotte, P. A., Marsh, K. C., Moskey, M. D., Martin, R. L., Olson, A. M., … Michaelides, M. R. (2007). Discovery of N-(4-(3-Amino-1 H-indazol-4-yl) phenyl)-N ‘-(2-fluoro-5-methylphenyl) urea (ABT-869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor. Journal of Medicinal Chemistry, 50(7), 1584–1597.
  • Dai, Y., Hartandi, K., Soni, N. B., Pease, L. J., Reuter, D. R., Olson, A. M., Osterling, D. J., Doktor, S. Z., Albert, D. H., Bouska, J. J., Glaser, K. B., Marcotte, P. A., Stewart, K. D., Davidsen, S. K., & Michaelides, M. R. (2008). Identification of aminopyrazolopyridine ureas as potent VEGFR/PDGFR multitargeted kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 18(1), 386–390. doi:10.1016/j.bmcl.2007.10.018
  • Dang, N. L., Hughes, T. B., Krishnamurthy, V., & Swamidass, S. J. (2016). A simple model predicts UGT-mediated metabolism. Bioinformatics, 32(20), 3183–3189. doi:10.1093/bioinformatics/btw350
  • DeZwaan, D. C., & Freeman, B. C. (2010). HSP90 manages the ends. Trends in Biochemical Sciences, 35(7), 384–391. doi:10.1016/j.tibs.2010.02.005
  • Dinges, J., Ashworth, K. L., Akritopolou-Zanze, I., Arnold, L. D., Baumeister, S. A., Bousquet, P. F., Cunha, G. A., Davidsen, S. K., Djuric, S. W., Gracias, V. J., Michaelides, M. R., Rafferty, P., Sowin, T. J., Stewart, K. D., Xia, Z., & Zhang, H. Q. (2006). 1, 4-Dihydroindeno [1, 2-c] pyrazoles as novel multitargeted receptor tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 16(16), 4266–4271. doi:10.1016/j.bmcl.2006.05.066
  • Ferrara, N. (2002). VEGF and the quest for tumour angiogenesis factors. Nature Reviews Cancer, 2(10), 795–803. doi:10.1038/nrc909
  • Gelboin, H. V. (1980). Benzo [alpha] pyrene metabolism, activation and carcinogenesis: Role and regulation of mixed-function oxidases and related enzymes. Physiological Reviews, 60(4), 1107–1166. doi:10.1152/physrev.1980.60.4.1107
  • Gupta, C. L., Babu Khan, M., Ampasala, D. R., Akhtar, S., Dwivedi, U. N., & Bajpai, P. (2019). Pharmacophore-based virtual screening approach for identification of potent natural modulatory compounds of human Toll-like receptor 7. Journal of Biomolecular Structure and Dynamics, 37(18), 4721–4736.
  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. doi:10.1016/j.cell.2011.02.013
  • Harmange, J.-C., Weiss, M. M., Germain, J., Polverino, A. J., Borg, G., Bready, J., Chen, D., Choquette, D., Coxon, A., DeMelfi, T., DiPietro, L., Doerr, N., Estrada, J., Flynn, J., Graceffa, R. F., Harriman, S. P., Kaufman, S., La, D. S., Long, A., … Zanon, R. (2008). Naphthamides as novel and potent vascular endothelial growth factor receptor tyrosine kinase inhibitors: Design, synthesis, and evaluation. Journal of Medicinal Chemistry, 51(6), 1649–1667. doi:10.1021/jm701097z
  • Hughes, T. B., Miller, G. P., & Swamidass, S. J. (2015). Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Central Science, 1(4), 168–180. doi:10.1021/acscentsci.5b00131
  • Hughes, T. B., Miller, G. P., & Swamidass, S. J. (2015). Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione. Chemical Research in Toxicology, 28(4), 797–809. doi:10.1021/acs.chemrestox.5b00017
  • Iqbal, J., Abbasi, B. A., Ahmad, R., Batool, R., Mahmood, T., Ali, B., Khalil, A. T., Kanwal, S., Afzal Shah, S., Alam, M. M., Bashir, S., Badshah, H., & Munir, A. (2019). Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomedicine & Pharmacotherapy, 109, 1381–1393. doi:10.1016/j.biopha.2018.10.107
  • Jana, S., & Singh, S. K. (2019). Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches. Journal of Biomolecular Structure and Dynamics, 37(4), 944–965.
  • Jia, J., Xu, Xli., Liu, F., Guo, Xke., Zhang, Mye., Lu, M., Xu, Lli., Wei, J., Zhu, J., Zhang, S., Zhang, S., Sun, H., & You, Q. (2013). Identification, design and bio-evaluation of novel Hsp90 inhibitors by ligand-based virtual screening. PloS One., 8(4), e59315. doi:10.1371/journal.pone.0059315
  • Joshi, T., Sharma, P., Joshi, T., & Chandra, S. (2019). In silico screening of anti-inflammatory compounds from Lichen by targeting cyclooxygenase-2. Journal of Biomolecular Structure and Dynamics, 1–19. doi:10.1080/07391102.2019.1664328
  • Kandakatla, N., & Ramakrishnan, G. (2014). Ligand based pharmacophore modeling and virtual screening studies to design novel HDAC2 inhibitors. Advances in Bioinformatics, 2014, 1–11. doi:10.1155/2014/812148
  • Kovačević, S. Z., Jevrić, L. R., Kuzmanović, S. O. P., & Lončar, E. S. (2014). Prediction of in-silico ADME properties of 1, 2-o-isopropylidene aldohexose derivatives. Iranian Journal of Pharmaceutical Research : Ijpr, 13(3), 899–907.
  • Lahari, B. L., Rajkumar, T., Reddy, L. S. S., Reddy, Y. S. R., Sivudu, G., & Krishna, P. N. (2015). In-silico design, synthesis and biological evaluation of some Michael adducts from chalcones. Inventi Impact Med. Chem, 2015, 119–132.
  • Lee, H., Saini, N., Howard, E. W., Parris, A. B., Ma, Z., Zhao, Q., Zhao, M., Liu, B., Edgerton, S. M., Thor, A. D., & Yang, X. (2018). Ganetespib targets multiple levels of the receptor tyrosine kinase signaling cascade and preferentially inhibits ErbB2-overexpressing breast cancer cells. Scientific Reports, 8(1), 6829. doi:10.1038/s41598-018-25284-0
  • Lian, L., Li, X.-L., Xu, M.-D., Li, X.-M., Wu, M.-Y., Zhang, Y., Tao, M., Li, W., Shen, X.-M., Zhou, C., & Jiang, M. (2019). VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer, 19(1), 183. doi:10.1186/s12885-019-5322-0
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. doi:10.1016/S0169-409X(96)00423-1
  • Lutz, W. K. (1979). In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis. Mutation Research/Reviews in Genetic Toxicology, 65(4), 289–356. doi:10.1016/0165-1110(79)90006-X
  • Maj, E., Papiernik, D., & Wietrzyk, J. (2016). Antiangiogenic cancer treatment: The great discovery and greater complexity. International Journal of Oncology, 49(5), 1773–1784.
  • Nachiappan, M., Jain, V., Sharma, A., Manickam, Y., & Jeyakanthan, J. (2019). Conformational changes in glutaminyl-tRNA synthetases upon binding of the substrates and analogs using molecular docking and molecular dynamics approaches. Journal of Biomolecular Structure and Dynamics, 38, 1–1589. doi:10.1080/07391102.2019.1617787
  • Nebert, D. W., & Russell, D. W. (2002). Clinical importance of the cytochromes P450. The Lancet, 360(9340), 1155–1162. doi:10.1016/S0140-6736(02)11203-7
  • Paramashivam, S. K., Elayaperumal, K., Natarajan, B., Ramamoorthy, M., Balasubramanian, S., & Dhiraviam, K. (2015). In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation, 11(2), 73–84. doi:10.6026/97320630011073
  • Pichler, W. J., Naisbitt, D. J., & Park, B. K. (2011). Immune pathomechanism of drug hypersensitivity reactions. Journal of Allergy and Clinical Immunology, 127(3), S74–S81. doi:10.1016/j.jaci.2010.11.048
  • Qin, S., Li, A., Yi, M., Yu, S., Zhang, M., & Wu, K. (2019). Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. Journal of Hematology & Oncology, 12(1), 27. doi:10.1186/s13045-019-0718-5
  • Sak, K. (2012). Chemotherapy and dietary phytochemical agents.. Chemotherapy research and practice, 2012. doi:10.1155/2012/282570
  • Schultz, T. W., Yarbrough, J. W., Hunter, R. S., & Aptula, A. O. (2007). Verification of the structural alerts for Michael acceptors. Chemical Research in Toxicology, 20(9), 1359–1363. doi:10.1021/tx700212u
  • Sharma, N., Sharma, M., Shakeel, E., Jamal, Q. M. S., Kamal, M. A., Sayeed, U., Khan, M. K. A., Siddiqui, M. H., Arif, J. M., & Akhtar, S. (2018). Molecular interaction and computational analytical studies of pinocembrin for its antiangiogenic potential targeting VEGFR-2: A persuader of metastasis. Medicinal Chemistry, 14(6), 626–640. doi:10.2174/1573406414666180416125121
  • Singh, S., Gupta, A. K., & Verma, A. (2013). Molecular Properties and Bioactivity score of the Aloe vera antioxidant compounds – in order to lead finding. Res. J. Pharm. Biol. Chem. Sci, 4(2), 876-881.
  • Skariyachan, S., Manjunath, M., & Bachappanavar, N. (2019). Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii–insights from molecular docking, molecular dynamic simulations and in vitro assays. Journal of Biomolecular Structure and Dynamics, 37(5), 1146–1169. doi:10.1080/07391102.2018.1451387
  • Sławiński, J., Grzonek, A., Żołnowska, B., & Kawiak, A. (2015). Synthesis of novel Pyrido [4, 3-e][1, 2, 4] triazino [3, 2-c][1, 2, 4] thiadiazine 6, 6-dioxide derivatives with potential anticancer activity. Molecules, 21(1), 41.
  • Srivastava, A., Maggs, J. L., Antoine, D. J., Williams, D. P., Smith, D. A., & Park, B. K. (2010). Role of reactive metabolites in drug-induced hepatotoxicity. In Adverse drug reactions (pp. 165–194). Heidelberg, Berlin: Springer.
  • Stachulski, A. V., Baillie, T. A., Kevin Park, B., Scott Obach, R., Dalvie, D. K., Williams, D. P., Srivastava, A., Regan, S. L., Antoine, D. J., Goldring, C. E. P., Chia, A. J. L., Kitteringham, N. R., Randle, L. E., Callan, H., Castrejon, J. L., Farrell, J., Naisbitt, D. J., & Lennard, M. S. (2013). The generation, detection, and effects of reactive drug metabolites. Medicinal Research Reviews, 33(5), 985–1080. doi:10.1002/med.21273
  • Testa, B., Pedretti, A., & Vistoli, G. (2012). Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discovery Today. , 17(11-12), 549–560. doi:10.1016/j.drudis.2012.01.017
  • ul Qamar, M. T., Maryam, A., Muneer, I., Xing, F., Ashfaq, U. A., Khan, F. A., & Siddiqi, A. R. (2019). Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus. Scientific reports, 9(1), 1433. doi:10.1038/s41598-018-38450-1
  • Xia, Y., Song, X., Li, D., Ye, T., Xu, Y., Lin, H., Meng, N., Li, G., Deng, S., Zhang, S., Liu, L., Zhu, Y., Zeng, J., Lei, Q., Pan, Y., Wei, Y., Zhao, Y., & Yu, L. (2015). YLT192, a novel, orally active bioavailable inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy in preclinical models. Scientific Reports, 4(1), 6031. doi:10.1038/srep06031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.