12,411
Views
224
CrossRef citations to date
0
Altmetric
Research Articles

An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study

, , &
Pages 3347-3357 | Received 18 Apr 2020, Accepted 27 Apr 2020, Published online: 13 May 2020

References

  • Aanouz, I., Belhassan, A., El Khatabi, K., Lakhlifi, T., El Idrissi, M., & Bouachrine, M. (2020). Moroccan medicinal plants as inhibitors of COVID-19: Computational investigations. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1758790
  • Akinboye, E. S., & Bakare, O. (2011). Biological activities of emetine. Open Natural Products Journal, 4, 8–15. https://doi.org/10.2174/1874848101104010008
  • Arthur, D. E., & Uzairu, A. (2019). Molecular docking studies on the interaction of NCI anticancer analogues with human Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit. Journal of King Saud University - Science, 31(4), 1151–1166. https://doi.org/10.1016/j.jksus.2019.01.011
  • Biovia, D. S. (2019). Discovery studio visualizer, 2019. Dassault Systèmes, (v19.1.0.15350).
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1758788
  • Coronavirus (COVID-19) events as they happen. (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
  • Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition, 5. https://doi.org/10.3389/fnut.2018.00087
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1). https://doi.org/10.1038/srep42717
  • De Clercq, E., & Li, G. (2016). Approved antiviral drugs over the past 50 years. Clinical Microbiology Reviews, 29(3), 695–747. https://doi.org/10.1128/CMR.00102-15
  • Elfiky, A. A., & Azzam, E. B. (2020). Novel Guanosine Derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1758789
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1758791
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., Ahmadi, K. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1756411
  • Fitchett, J. R., Head, M. G., Cooke, M. K., Wurie, F. B., & Atun, R. (2014). Funding infectious disease research: A systematic analysis of UK research investments by funders 1997-2010. PLoS One, 9(8), e105722. https://doi.org/10.1371/journal.pone.0105722
  • Ganeshpurkar, A., & Saluja, A. K. (2017). The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(2), 149–164. https://doi.org/10.1016/j.jsps.2016.04.025
  • Gautret, P., Lagier, J.-C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Dupont, H. T., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J.-M., Brouqui, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(suppl), W270–7. https://doi.org/10.1093/nar/gkr366
  • Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1751300
  • Hasan, A., Paray, B. A., Hussain, A., Qadir, F. A., Attar, F., Aziz, F. M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., Shahpasand, K., Saboury, A. A., & Falahati, M. (2020). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1754293
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., … Yang, H. (2020). Structure of Mpro from COVID-19 virus and discovery of its inhibitors. BioRxiv, https://doi.org/10.1101/2020.02.26.964882
  • Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
  • Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S. (2020). Potential Inhibitor of COVID-19 Main Protease (M pro) from Several Medicinal Plant Compounds by Molecular Docking Study. Preprints (Www.Preprints.Org) | NOT PEER-REVIEWED | Posted: 13 March 2020, https://doi.org/10.20944/Preprints202003.0226.V1 (March), 1–14.
  • Khan, R. J., Jha, R. K., Amera, G., Jain, M., Singh, E., Pathak, A., … Singh, A. K. (2020). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like Proteinase and 2’-O-RiboseMethyltransferase. Journal of Biomolecular Structure & Dynamics, 1–40. https://doi.org/10.1080/07391102.2020.1753577
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1751298
  • Law, G. L., Tisoncik-Go, J., Korth, M. J., & Katze, M. G. (2013). Drug repurposing: A better approach for infectious disease drug discovery? Current Opinion in Immunology, 25(5), 588–592. https://doi.org/10.1016/j.coi.2013.08.004
  • Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). BioScience Trends, 14(1), 69–71. https://doi.org/10.5582/bst.2020.01020
  • Lu, H., Stratton, C. W., & Tang, Y. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of Medical Virology, 92(4), 401–402. https://doi.org/10.1002/jmv.25678
  • Morse, J. S., Lalonde, T., Xu, S., & Liu, W. R. (2020). Learning from the Past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem., 21(5), 730–738. https://doi.org/10.1002/cbic.202000047
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1752802
  • Owen, C. D., Lukacik, P., Strain-Damerell, C. M., Douangamath, A., Powell, A. J., Fearon, D., Brandao-Neto, J., Crawshaw, A. D., Aragao, D., Williams, M., Flaig, R., Hall, D. R., McAuley, K. E., Mazzorana, M., Stuart, D. I., von Delft, F., & Walsh, M. A. (2020). COVID-19 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, SARS-CoV-2). RCSB Protein Data Bank (PDB) ID, 6Y84, 3–7. https://doi.org/10.2210/pdb6Y84
  • Panic, G., Duthaler, U., Speich, B., & Keiser, J. (2014). Repurposing drugs for the treatment and control of helminth infections. International Journal for Parasitology: Drugs and Drug Resistance, 4(3), 185–200. https://doi.org/10.1016/j.ijpddr.2014.07.002
  • Pant, S., Singh, M., Ravichandiran, V., Murty, U. S. N., & Srivastava, H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1757510
  • Park, K. (2019). A review of computational drug repurposing. Translational and Clinical Pharmacology, 27(2), 59–63. https://doi.org/10.12793/tcp.2019.27.2.59
  • Parvez, M. K., Tabish Rehman, M., Alam, P., Al-Dosari, M. S., Alqasoumi, S. I., & Alajmi, M. F. (2019). Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharmaceutical Journal, 27(3), 389–400. https://doi.org/10.1016/j.jsps.2018.12.008
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Sarma, P., Sekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., … Medhi, B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1753580
  • Schrodinger LLC. (2017). The PyMOL Molecular Graphics System, Version 2.0, Schrödinger, LLC.
  • Thayil, S. M., & Thyagarajan, S. P. (2016). Pa-9: A flavonoid extracted from plectranthus amboinicus inhibits HIV-1 protease. International Journal of Pharmacognosy and Phytochemical Research, 8(6), 1020–1024.
  • Thompson, M. A. (2004). Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScore scoring function [Paper presentation].ACS Meeting.
  • Thuy, B. T. P., My, T. T. A., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Thi Phuong Loan, H., Triet, N. T., Anh, T. T. V., Quy, P. T., Tat, P. V., Hue, N. V., Quang, D. T., Trung, N. T., Tung, V. T., Huynh, L. K., & Nhung, N. T. A. (2020). Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 5(14), 8312–8320. https://doi.org/10.1021/acsomega.0c00772
  • Vardakas, K. Z., Michalopoulos, A., & Falagas, M. E. (2005). Fluconazole versus itraconazole for antifungal prophylaxis in neutropenic patients with haematological malignancies: A meta-analysis of randomised-controlled trials. British Journal of Haematology, 131(1), 22–28. https://doi.org/10.1111/j.1365-2141.2005.05727.x
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, Y., Fan, G., Salam, A., Horby, P., Hayden, F. G., Chen, C., Pan, J., Zheng, J., Lu, B., Guo, L., Wang, C., & Cao, B. (2020). Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection. The Journal of Infectious Diseases, 221(10), 1688–1698. https://doi.org/10.1093/infdis/jiz656
  • Wu, Y.-S., Lin, W.-H., T.-A.Hsu, J., & Hsieh, H.-P. (2006). Antiviral drug discovery against SARS-CoV. Current Medicinal Chemistry, 13(17), 2003–2020. https://doi.org/10.2174/092986706777584988
  • Xu, Z., Peng, C., Shi, Y., Zhu, Z., Mu, K., Wang, X., & Zhu, W. (2020). Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv, p. 2020.01.27.921627. https://doi.org/10.1101/2020.01.27.921627
  • Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: Promising natural compounds against viral infections. Archives of Virology, 162(9), 2539–2551. https://doi.org/10.1007/s00705-017-3417-y
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., … Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, eabb3405. https://doi.org/10.1126/science.abb3405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.