81
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

To be ionized or not to be ionized: the vital role of physicochemical properties of galbanic acid derivatives in AChE assay

ORCID Icon, &
Pages 3235-3243 | Received 05 Apr 2020, Accepted 23 Apr 2020, Published online: 15 May 2020

References

  • Alam, P., Siddiqi, K., Chturvedi, S. K., & Khan, R. H. (2017). Protein aggregation: From background to inhibition strategies. International Journal of Biological Macromolecules, 103, 208–219. https://doi.org/10.1016/j.ijbiomac.2017.05.048
  • Alzheimer’s Association. (2017). 2017 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 13(4), 325–373.
  • Bar-On, P., Millard, C. B., Harel, M., Dvir, H., Enz, A., Sussman, J. L., & Silman, I. (2002). Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry, 41(11), 3555–3564. https://doi.org/10.1021/bi020016x
  • Birks, J. (2006). Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database of Systematic Reviews, 1(1), CD005593.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 14101. https://doi.org/10.1063/1.2408420
  • Cha, M.-R., Choi, Y. H., Choi, C. W., Kim, Y. S., Kim, Y.-K., Ryu, S. Y., Kim, Y. H., & Choi, S. U. (2011). Galbanic acid, a cytotoxic sesquiterpene from the gum resin of Ferula asafoetida, blocks protein farnesyltransferase. Planta Medica, 77(1), 52–54. https://doi.org/10.1055/s-0030-1250049
  • Chaturvedi, S. K., Siddiqi, M. K., Alam, P., & Khan, R. H. (2016). Protein misfolding and aggregation: Mechanism, factors and detection. Process Biochemistry, 51(9), 1183–1192. https://doi.org/10.1016/j.procbio.2016.05.015
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dastan, D., Salehi, P., Aliahmadi, A., Gohari, A. R., Maroofi, H., & Ardalan, A. (2016). New coumarin derivatives from Ferula pseudalliacea with antibacterial activity. Natural Product Research, 30(24), 2747–2753. https://doi.org/10.1080/14786419.2016.1149705
  • Dastan, D., Salehi, P., Reza Gohari, A., Zimmermann, S., Kaiser, M., Hamburger, M., Reza Khavasi, H., & Ebrahimi, S. N. (2012). Disesquiterpene and sesquiterpene coumarins from Ferula pseudalliacea, and determination of their absolute configurations. Phytochemistry, 78, 170–178. https://doi.org/10.1016/j.phytochem.2012.02.016
  • Ebadi, A., Khoshneviszadeh, M., Javidnia, K., Hossein Ghahremani, M., Firuzi, O., & Miri, R. (2017). 3, 4-Dihydropyrimidin-2 (1H)-one C5 amides as inhibitors of T NFα production: Synthesis, biological evaluation and molecular modeling. Letters in Drug Design & Discovery, 14(8), 885–897. https://doi.org/10.2174/1570180814666170306120235
  • El-Razek, M. H. A., Ohta, S., Ahmed, A. A., & Hirata, T. (2001). Sesquiterpene coumarins from the roots of Ferula assa-foetida. Phytochemistry, 58(8), 1289–1295. https://doi.org/10.1016/S0031-9422(01)00324-7
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Farlow, M. (2002). A clinical overview of cholinesterase inhibitors in Alzheimer’s disease. International Psychogeriatrics, 14(S1), 93–126. https://doi.org/10.1017/S1041610203008688
  • Gliszczyńska, A., & Brodelius, P. E. (2012). Sesquiterpene coumarins. Phytochemistry Reviews, 11(1), 77–96. https://doi.org/10.1007/s11101-011-9220-6
  • Goedert, M., & Spillantini, M. G. (2006). A century of Alzheimer's disease. Science (New York, N.Y.), 314(5800), 777–781. https://doi.org/10.1126/science.1132814
  • Hanafi-Bojd, M. Y., Iranshahi, M., Mosaffa, F., Tehrani, S. O., Kalalinia, F., & Behravan, J. (2011). Farnesiferol A from Ferula persica and galbanic acid from Ferula szowitsiana inhibit P-glycoprotein-mediated rhodamine efflux in breast cancer cell lines. Planta Medica, 77(14), 1590–1593. https://doi.org/10.1055/s-0030-1270987
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Ibrar, A., Shehzadi, S. A., Saeed, F., & Khan, I. (2018). Developing hybrid molecule therapeutics for diverse enzyme inhibitory action: Active role of coumarin-based structural leads in drug discovery. Bioorganic & Medicinal Chemistry, 26(13), 3731–3762. https://doi.org/10.1016/j.bmc.2018.05.042
  • Iranshahi, M., Amin, G., & Shafiee, A. (2004). A new coumarin from Ferula persica. Pharmaceutical Biology, 42(6), 440–442. https://doi.org/10.1080/13880200490886102
  • Iranshahi, M., Arfa, P., Ramezani, M., Jaafari, M. R., Sadeghian, H., Bassarello, C., Piacente, S., & Pizza, C. (2007). Sesquiterpene coumarins from Ferula szowitsiana and in vitro antileishmanial activity of 7-prenyloxycoumarins against promastigotes. Phytochemistry, 68(4), 554–561. https://doi.org/10.1016/j.phytochem.2006.11.002
  • Karimi, G., Iranshahi, M., Hosseinalizadeh, F., Riahi, B., & Sahebkar, A. (2010). Screening of acetylcholinesterase inhibitory activity of terpenoid and coumarin derivatives from the genus Ferula. Pharmacologyonline, 1, 566–574.
  • Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug discovery. Nature Reviews. Drug Discovery, 4(3), 206–220. https://doi.org/10.1038/nrd1657
  • Kohno, S., Murata, T., Sugiura, A., Ito, C., Iranshahi, M., Hikita, K., & Kaneda, N. (2011). Methyl galbanate, a novel inhibitor of nitric oxide production in mouse macrophage RAW264.7 cells. Journal of Natural Medicines, 65(2), 353–359. https://doi.org/10.1007/s11418-010-0505-7
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. –.The American Journal of Clinical Nutrition, 81(1 Suppl), 230S–242S. https://doi.org/10.1093/ajcn/81.1.230S
  • Mattson, M. P. (2004). Pathways towards and away from Alzheimer's disease. Nature, 430(7000), 631–639. https://doi.org/10.1038/nature02621
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nachon, F., Carletti, E., Ronco, C., Trovaslet, M., Nicolet, Y., Jean, L., & Renard, P.-Y. (2013). Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase. The Biochemical Journal, 453(3), 393–399. https://doi.org/10.1042/BJ20130013
  • Neese, F. (2012). The ORCA program system. WIREs Computational Molecular Science, 2(1), 73–78. https://doi.org/10.1002/wcms.81
  • Nizri, E., Hamra-Amitay, Y., Sicsic, C., Lavon, I., & Brenner, T. (2006). Anti-inflammatory properties of cholinergic up-regulation: A new role for acetylcholinesterase inhibitors. Neuropharmacology, 50(5), 540–547. https://doi.org/10.1016/j.neuropharm.2005.10.013
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Racchi, M., Mazzucchelli, M., Porrello, E., Lanni, C., & Govoni, S. (2004). Acetylcholinesterase inhibitors: Novel activities of old molecules. Pharmacological Research, 50(4), 441–451. https://doi.org/10.1016/j.phrs.2003.12.027
  • Razzaghi-Asl, N., Ebadi, A., Edraki, N., Shahabipour, S., & Miri, R. (2013). Fragment-based binding effciency indices in bioactive molecular design: A computational approach to BACE-1 inhibitors. Iranian Journal of Pharmaceutical Research, 12(3), 423–436.
  • Razzaghi-Asl, N., Sepehri, S., Ebadi, A., Miri, R., & Shahabipour, S. (2015). Molecular docking and quantum mechanical studies on biflavonoid structures as BACE-1 inhibitors. Structural Chemistry, 26(2), 607–621. https://doi.org/10.1007/s11224-014-0523-2
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shah, R. R. (2004). Drug development and use in the elderly: Search for the right dose and dosing regimen (Parts I and II). British Journal of Clinical Pharmacology, 58(5), 452–469. https://doi.org/10.1111/j.1365-2125.2004.02228.x
  • Shahverdi, A. R., Fakhimi, A., Zarrini, G., Dehghan, G., & Iranshahi, M. (2007). Galbanic acid from Ferula szowitsiana enhanced the antibacterial activity of penicillin G and cephalexin against Staphylococcus aureus. Biological & Pharmaceutical Bulletin, 30(9), 1805–1807. https://doi.org/10.1248/bpb.30.1805
  • Thaipisuttikul, P., & Galvin, J. E. (2012). Use of medical foods and nutritional approaches in the treatment of Alzheimer’s disease. Clinical Practice (Practice), 9(2), 199–209. https://doi.org/10.2217/cpr.12.3
  • Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. International Journal of Molecular Sciences, 19(6), 1578. https://doi.org/10.3390/ijms19061578
  • Toukan, K., & Rahman, A. (1985). Molecular-dynamics study of atomic motions in water. Physical Review B, 31(5), 2643–2648. https://doi.org/10.1103/PhysRevB.31.2643
  • Von Bernhardi, R., & Eugenín, J. (2012). Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxidants & Redox Signaling, 16(9), 974–1031. https://doi.org/10.1089/ars.2011.4082
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Williamson, G., & Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. The American Journal of Clinical Nutrition, 81(1 Suppl), 243S–255S. https://doi.org/10.1093/ajcn/81.1.243S
  • Zhang, J., Zhang, H., Wu, T., Wang, Q., & van der Spoel, D. (2017). Comparison of implicit and explicit solvent models for the calculation of solvation free energy in organic solvents. Journal of Chemical Theory and Computation, 13(3), 1034–1043. https://doi.org/10.1021/acs.jctc.7b00169

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.