233
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Biophysical insights into the interaction of human serum albumin with Cassia fistula leaf extracts inspired biogenic potent antibacterial and anticancerous gold nanoparticles

, , , , , , & show all
Pages 4567-4581 | Received 18 Apr 2020, Accepted 01 Jun 2020, Published online: 22 Jun 2020

References

  • Absar, A., Satyajyoti, S., Khan, M. I., Rajiv, K., Ramani, R., Srinivas, V., & Murali, S. (2003). Intracellular synthesis of gold nanoparticles by a novel alkalo tolerant actinomycete, Rhodococcus species. Nanotechnology, 14(7), 824–828. https://doi.org/10.1088/0957-4484/14/7/323
  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusariumoxy sporum. Colloids and Surfaces B: Biointerfaces, 28(4), 313–318. https://doi.org/10.1016/S0927-7765(02)00174-1
  • Ahmad, B., Parveen, S., & Khan, R. H. (2006). Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: A novel approach directly assigning binding site. Biomacromolecules, 7(4), 1350–1356. https://doi.org/10.1021/bm050996b
  • Ahmad, N., Sharma, S., Alam, M. K., Singh, V. N., Shamsi, S. F., Mehta, B. R., & Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces. B, Biointerfaces, 81(1), 81–86. https://doi.org/10.1016/j.colsurfb.2010.06.029
  • Beattie, I. R., & Haverkamp, R. G. (2011). Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics: Integrated Biometal Science, 3(6), 628–632. https://doi.org/10.1039/c1mt00044f
  • Beg, M., Maji, A., Islam, M. M., & Hossain, M. (2019). Elucidating the interaction of Spathodea campanulata leaf extracts mediated potential bactericidal gold nanoparticles with human serum albumin: Spectroscopic analysis. Journal of Biomolecular Structure & Dynamics, 37(13), 3536–3549. https://doi.org/10.1080/07391102.2018.1518157
  • Beg, M., Maji, A., Mandal, A. K., Das, S., Aktara, M. N., Jha, P. K., & Hossain, M. (2017). Green synthesis of silver nanoparticles using Pongamia pinnata seed: Characterization, antibacterial property and spectroscopic investigation of interaction with human serum albumin. Journal of Molecular Recognition, 30(1), e2565. https://doi.org/10.1002/jmr.2565
  • Beg, M., Maji, A., Mandal, A. K., Das, S., Jha, P. K., & Hossain, M. (2018a). Probing the binding of Spathodea campanulata leaves extract mediated biogenic potential microbicidal silver nanoparticles to human serum albumin: An insight in the light of spectroscopic approach. Journal of Luminescence, 202, 147–156. https://doi.org/10.1016/j.jlumin.2018.05.047
  • Beg, M., Maji, A., Mandal, A. K., Das, S., Jha, P. K., & Hossain, M. (2018b). Spectroscopic investigation on interaction of biogenic, Croton bonplandianum leaves extract mediated potential bactericidal silver nanoparticles with human hemoglobin and human serum albumin. Journal of Biomolecular Structure & Dynamics, 36(3), 711–741. https://doi.org/10.1080/07391102.2017.1294505
  • Begum, N. A., Mondal, S., Basu, S., Laskar, R. A., & Mandal, D. (2009). Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids and Surfaces. B, Biointerfaces, 71(1), 113–118. https://doi.org/10.1016/j.colsurfb.2009.01.012
  • Beigoli, S., Rad, A. S., Askari, A., Darban, R. A., & Chamani, J. (2019). Isothermal titration calorimetry and stopped flow circular dichroism investigations of the interaction between lomefloxacin and human serum albumin in the presence of amino acids. Journal of Biomolecular Structure & Dynamics, 37(9), 2265–2282. https://doi.org/10.1080/07391102.2018.1491421
  • Bhattacharya, D., & Gupt, R. K. (2005). Nanotechnology and potential of microorganisms. Critical Reviews in Biotechnology, 25(4), 199–204. https://doi.org/10.1080/07388550500361994
  • Cañaveras, F., Madueño, R., Sevilla, J. M., Blázquez, M., & Pineda, T. (2012). Role of the functionalization of the gold nanoparticle surface on the formation of bioconjugates with human serum albumin. The Journal of Physical Chemistry C, 116(18), 10430–10437. doi:/10.1021/jp3021497 https://doi.org/10.1021/jp3021497
  • Cedervall, T., Lynch, I., Foy, M., Berggård, T., Donnelly, S. C., Cagney, G., Linse, S., & Dawson, K. A. (2007). Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angewandte Chemie (International ed. in English), 46(30), 5754–5756. https://doi.org/10.1002/anie.200700465
  • Chen, Y. H., Yang, J. T., & Martinez, H. M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 11(22), 4120–4131. https://doi.org/10.1021/bi00772a015
  • Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346. doi:10.1021/cr030698 + 
  • Danish, M., Singh, P., Mishra, G., Srivastava, S., Jha, K. K., & Khosa, R. L. (2011). Cassia fistula Linn. (Amulthus)-An important medicinal plant: A review of its traditional uses, phytochemistry and pharmacological properties. Journal of Natural Product and Plant Resources, 1, 101–118.
  • Das, R. K., Sharma, P., Nahar, P., & Bora, U. (2011). Synthesis of gold nanoparticles using aqueous extract of Calotropisprocera latex. Materials Letters, 65(4), 610–613. https://doi.org/10.1016/j.matlet.2010.11.040
  • De Paoli-Lacerda, S. H., Park, J. J., Meuse, C., Pristinski, D., Becker, M. L., Karim, A., & Douglas, J. F. (2010). Interaction of gold nanoparticles with common human blood proteins. ACS Nano, 4(1), 365–379. https://doi.org/10.1021/nn9011187
  • Ding, F., Liu, W., Li, Y., Zhang, L., & Sun, Y. (2010). Determining the binding affinity and binding site of bensulfuron-methyl to human serum albumin by quenching of the intrinsic tryptophan fluorescence. Journal of Luminescence, 130(11), 2013–2021. https://doi.org/10.1016/j.jlumin.2010.05.019
  • Gardea-Torresdey, J. L., Parsons, J. G., Gomez, E., Peralta-Videa, J., Troiani, H. E., Santiago, P., & Yacaman, M. J. (2002). Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Letters, 2(4), 397–401. https://doi.org/10.1021/nl015673
  • Geddes, C. D., Parfenov, A., Gryczynski, I., & Lakowicz, J. R. (2003). Luminescent blinking of gold nanoparticles. Chemical Physics Letters, 380(3–4), 269–272. https://doi.org/10.1016/j.cplett.2003.07.029
  • Giljohann, D. A., Seferos, D. S., Daniel, W. L., Massich, M. D., Patel, P. C., & Mirkin, C. A. (2010). Gold nanoparticles for biology and medicine. Angewandte Chemie (International ed. in English), 49(19), 3280–3294. https://doi.org/10.1002/anie.200904359
  • Gokara, M., Sudhamalla, B., Amooru, D. G., & Subramanyam, R. (2010). Molecular interaction studies of trimethoxy flavone with human serum albumin. PLos One, 5(1), e8834. https://doi.org/10.1371/journal.pone.0008834
  • Gomez-Romero, P. (2001). Hybrid organic − inorganic materials: In search of synergic activity. Advanced Materials, 13(3), 163–174. https://doi.org/10.1002/1521-4095(200102)13:3 < 163::AID-ADMA163 > 3.0.CO;2-U
  • Guo, M., Zhang, L. Y., Lu, W. J., & Cao, H. R. (2011). Analysis of the spectroscopic characteristics on the binding interaction between to sufloxacin and bovine lactoferrin. Journal of Luminescence, 131(4), 768–775. https://doi.org/10.1016/j.jlumin.2010.11.036
  • Hazra, S., Hossain, M., & Kumar, G. S. (2013). Binding of isoquinoline alkaloids berberine, palmatine and coralyne to hemoglobin: Structural and thermodynamic characterization studies. Molecular Biosystems, 9(1), 143–153. https://doi.org/10.1039/C2MB25345C
  • Hemmateenejad, B., & Yousefinejad, S. (2013). Interaction study of human serum albumin and ZnS nanoparticles using fluorescence spectrometry. Journal of Molecular Structure, 1037, 317–322. https://doi.org/10.1016/j.molstruc.2013.01.009
  • Hicks, B., White, M., Ghiron, C. A., Kuntz, R. R., & Volkert, W. A. (1978). Flash photolysis of human serum albumin: Characterization of the indole triplet absorption spectrum and decay at ambient temperature. Proceedings of the National Academy of Sciences of the United States of America, 75(3), 1172–1175. https://doi.org/10.1073/pnas.75.3.1172
  • Jafari, A. V., Kasravi, S., Alizadeh, Z. H., Memar, B. A. M., Saboury, A. A., Rahimi, A., & Falahati, M. (2017). Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles. Journal of Biomolecular Structure and Dynamics, 35(12), 2565–2513. https://doi.org/10.1080/07391102.2016.1222972
  • Jennings, T. L., Singh, M. P., & Strouse, G. F. (2006). Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: Probing NSET validity. Journal of the American Chemical Society, 128(16), 5462–5467. https://doi.org/10.1021/ja0583665
  • Kalimuthu, K., Venkataraman, D., SureshBabu, R. K. P., Muniasamy, K., Selvaraj, B. M. K., Bose, K., & Sangiliyandi, G. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surface B: Biointerfaces, 77(2), 257–262. https://doi.org/10.1016/j.colsurfb.2010.02.007
  • Kamshad, M., Talab, M. S., Beigoli, S., Rad, A. S., & Chamani, J. (2019). Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. Journal of Biomolecular Structure and Dynamics, 37(8), 2030–2371. https://doi.org/10.1080/07391102.2018.1475258
  • Kemp, M. M., Kumar, A., Mousa, S., Park, T. J., Ajayan, P., Kubotera, N., Mousa, S. A., & Linhardt, R. (2009). Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromolecules, 10(3), 589–595. https://doi.org/10.1021/bm801266t
  • Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13611–13614. https://doi.org/10.1073/pnas.96.24.13611
  • Kosa, T., Maruyama, T., & Otagiri, M. (1997). Species differences of serum albumins: I. Drug binding sites. Pharmaceutical Research, 14(11), 1607–1612. doi: 10.1023/a:1012138604016
  • Kumar, K. A., Satish, S., Sayeed, I., & Hedge, K. (2017). Therapeutic uses of Cassia fistula. Review. International Journal of Pharma and Chemical Research, 3(1), 38–43.
  • Kumar, K. P., Paul, W., & Sharma, C. P. (2011). Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility. Process Biochemistry, 46(10), 2007–2013. https://doi.org/10.1016/j.procbio.2011.07.011
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). Springer.
  • Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. Green Chemistry, 9(8), 852–858. https://doi.org/10.1039/b615357g
  • Maji, A., Beg, M., Das, S., Jana, G. C., Jha, P. K., Islam, M. M., & Hossain, M. (2019). Spectroscopic study on interaction of Nymphaea nouchali leaf extract mediated bactericidal gold nanoparticles with human serum albumin. Journal of Molecular Structure, 1179, 685–693. https://doi.org/10.1016/j.molstruc.2018.11.055
  • Miller, J. N. (1984). Recent developments in fluorescence and chemiluminescence analysis. Plenary lecture. The Analyst, 109(3), 191–198. https://doi.org/10.1039/an9840900191
  • Mondal, S., Roy, N., Laskar, R. A., Sk, I., Basu, S., Mandal, D., & Begum, N. A. (2011). Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids and Surfaces. B, Biointerfaces, 82(2), 497–504. https://doi.org/10.1016/j.colsurfb.2010.10.007
  • Murray, M. J., & Snowden, M. J. (1995). The preparation, characterization and applications of colloidal microgels. Advances in Colloid and Interface Science, 54, 73–91. https://doi.org/10.1016/0001-8686(94)00222-X
  • Nadeem, M., Abbasi, B. H., Younas, M., Ahmad, W., & Khan, T. (2017). A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chemistry Letters and Reviews, 10(4), 216–227. https://doi.org/10.1080/17518253.2017.1349192
  • Navarro, J. R., & Werts, M. H. (2013). Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfluidic channels. The Analyst, 138(2), 583–592. https://doi.org/10.1039/c2an36135c
  • Olaf, J. R., Martin, A., & Birch David, J. S. J. (2007). Human serum albumin and quercetin interactions monitored by time-resolved fluorescence: Evidence for enhanced discrete rotamer conformations. Journal of Biomedical Optics, 12(3), 34013–34017. https://doi.org/10.1117/1.2747623
  • Peters, T. (1996). All about albumin: Biochemistry, genetics, and medical applications (Vol. 41, p. 382). Academic Press, Inc.
  • Philip, D. (2011). Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 78(1), 327–331. https://doi.org/10.1016/j.saa.2010.10.015
  • Rad, A. S., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2020). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin, and QMMD simulations. Journal of Biomolecular Structure and Dynamics, 1–27. https://doi.org/10.1080/07391102.2020.1724568
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Salata, O. V. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2(1), 3https://doi.org/10.1186/1477-3155-2-3
  • Sen, I. K., Mandal, A. K., Chakraborti, S., Dey, B., Chakraborty, R., & Islam, S. S. (2013). Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. International Journal of Biological Macromolecules, 62, 439–449. https://doi.org/10.1016/j.ijbiomac.2013.09.019
  • Sen, T., Haldar, K. K., & Patra, A. J. (2008). Au nanoparticle-based surface energy transfer probe for conformational changes of BSA protein. The Journal of Physical Chemistry C, 112(46), 17945–17951. https://doi.org/10.1021/jp806866r
  • Sen, T., Sadhu, S., & Patra, A. (2007). Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler. Applied Physics Letters, 91(4), 43104. https://doi.org/10.1063/1.2762283
  • Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496–502. https://doi.org/10.1016/j.jcis.2004.03.003
  • Sharma, A. S., & Ilanchelian, M. (2015). Comprehensive multispectroscopic analysis on the interaction and corona formation of human serum albumin with gold/silver alloy nanoparticles. The Journal of Physical Chemistry. B, 119(30), 9461–9476. https://doi.org/10.1021/acs.jpcb.5b00436
  • Sharma, N. C., Sahi, S. V., Nath, S., Parsons, J. G., Gardea-Torresde, J. L., & Pal, T. (2007). Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environmental Science & Technology, 41(14), 5137–5142. https://doi.org/10.1021/es062929a
  • Song, J., & Kim, B. (2008). Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean Journal of Chemical Engineering, 25(4), 808–811. https://doi.org/10.1007/s11814-008-0133-z
  • Stratakis, M., & Garcia, H. (2012). Catalysis by supported gold nanoparticles: Beyond aerobic oxidative processes. Chemical Reviews, 112(8), 4469–4506. https://doi.org/10.1021/cr3000785
  • Sulkowska, A. (2002). Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure, 614(1–3), 227–232. https://doi.org/10.1016/S0022-2860(02)00256-9
  • Suresh, D. V., Mahesha, H. G., Rao, A. G. A., & Srinivasan, K. (2007). Binding of bioactive phytochemical piperine with human serum albumin: A spectrofluorometric study. Biopolymers, 86(4), 265–275. https://doi.org/10.1002/bip.20735
  • Vannoy, C. H., & Leblanc, R. M. (2010). Effects of DHLA-capped CdSe/ZnS quantum dots on the fibrillation of human serum albumin. The Journal of Physical Chemistry. B, 114(33), 10881–10888. https://doi.org/10.1021/jp1045904
  • Vinod, V. T. P., Saravanan, P., Sreedhar, B., Devi, D. K., & Sashidhar, R. B. (2011). A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids and Surfaces. B, Biointerfaces, 83(2), 291–298. https://doi.org/10.1016/j.colsurfb.2010.11.035
  • Xie, H., Tkachenko, A. G., Glomm, W. R., Ryan, J. A., Brennaman, M. K., Papanikolas, J. M., Franzen, S., & Feldheim, D. L. (2003). Critical flocculation concentrations, binding isotherms, and ligand exchange properties of peptide-modified gold nanoparticles studied by UV-visible, fluorescence, and time-correlated single photon counting spectroscopies. Analytical Chemistry, 75(21), 5797–5805. https://doi.org/10.1021/ac034578d
  • Zeinabad, H. A., Kachooei, E., Saboury, A. A., Kostova, I., Attar, F., Vaezzadeh, M., & Falahati, M. (2016). Thermodynamic and conformational changes of protein toward interaction with nanoparticles: A spectroscopic overview. RSC Advances, 6(107), 105903–105919. https://doi.org/10.1039/C6RA16422F
  • Zhang, X., Shu, C., Xie, L., Wang, C., Zhang, Y., Xiang, J., Li, L., & Tang, Y. (2007). Protein conformation changes induced by a novel organophosphate-containing water-soluble derivative of a C60 fullerene nanoparticle. The Journal of Physical Chemistry C, 111(39), 14327–14333. https://doi.org/10.1021/jp073267u

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.