4,482
Views
43
CrossRef citations to date
0
Altmetric
Research Articles

Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4594-4609 | Received 19 May 2020, Accepted 01 Jun 2020, Published online: 23 Jun 2020

References

  • Aanouz, I., Belhassan, A., El Khatabi, K., Lakhlifi, T., El Idrissi, M., & Bouachrine, M. (2020). Moroccan Medicinal plants as inhibitors of COVID-19: Computational investigations. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1758790
  • Abdelli, I., Hassani, F., Bekkel Brikci, S., & Ghalem, S. (2020). In silico study the inhibition of Angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from western Algeria. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2020.1763199
  • Adeoye, A. O., Oso, B. J., Olaoye, I. F., Tijjani, H., & Adebayo, A. I. (2020). Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1765876.
  • Al-Khafaji, K., Al-DuhaidahawiL, D., & Taskin Tok, T. (2020). Using Integrated Computational Approaches to Identify Safe and Rapid Treatment for SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1764392
  • Alsayari, A., Darweesh, M., Halaweish, F., & Chase, C. C. L. (2012). Anti-bovine viral diarrhea virus activity of cucurbitacins as new potential antiviral agents. Planta Medica, 78(11), PD142. https://doi.org/10.1055/s-0032-1320500
  • Anbarasu, K., Manisenthil, K. K., & Ramachandran, S. (2011). Antipyretic, anti-inflammatory and analgesic properties of nilavembu kudineer choornam: A classical preparation used in the treatment of chikungunya fever. Asian Pacific Journal of Tropical Medicine, 4(10), 819–823. https://doi.org/10.1016/S1995-7645(11)60201-0
  • Beema Shafreen, R. M., Selvaraj, C., Singh, S. K., & Karutha Pandian, S. (2014). In silico and in vitro studies of cinnamaldehyde and their derivatives against LuxS in Streptococcus pyogenes: Effects on biofilm and virulence genes. Journal of Molecular Recognition: JMR, 27(2), 106–116. https://doi.org/10.1002/jmr.2339
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1758788
  • Borgio, J. F., Alsuwat, H. S., Al Otaibi, W. M., Ibrahim, A. M., Almandil, N. B., Al Asoom, L. I., Salahuddin, M., Kamaraj, B., & AbdulAzeez, S. (2020). State-of-the-art tools unveil potent drug targets amongst clinically approved drugs to inhibit helicase in SARS-CoV-2. Archives of Medical Science : Ams, 16(3), 508–518. https://doi.org/10.5114/aoms.2020.94567
  • Chao, W., & Lin, B. (2010). Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chinese Medicine, 5(1), 17. https://doi.org/10.1186/1749-8546-5-17
  • Chen, K., & Kurgan, L. (2009). Investigation of atomic level patterns in protein—small ligand interactions. PLoS One, 4(2), e4473. https://doi.org/10.1371/journal.pone.0004473
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet (London, England), 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
  • Chu, M., Zhang, M.-B., Liu, Y.-C., Kang, J.-R., Chu, Z.-Y., Yin, K.-L., Ding, L.-Y., Ding, R., Xiao, R.-X., Yin, Y.-N., Liu, X.-Y., & Wang, Y.-D. (2016). Role of berberine in the treatment of methicillin-resistant Staphylococcus aureus infections. Scientific Reports, 6, 24748. https://doi.org/10.1038/srep24748
  • Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (2020). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics, 1–18. https://doi.org/10.1080/07391102.2020.1763201
  • Derosa, G., Maffioli, P., & Sahebkar, A. (2016). Piperine and its role in chronic diseases. Advances in Experimental Medicine and Biology, 928, 173–184. https://doi.org/10.1007/978-3-319-41334-1_8
  • Dkhil, M. A., & Al-Quraishy, S. (2014). Evaluation of antiviral activity of berberine against herpes simplex viruses. Journal of Pure and Applied Microbiology, 8, 155–159.
  • Elfiky, A. A. (2020a). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1761882
  • Elfiky, A. A. (2020b). Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1761881
  • Elfiky, A. A., & Azzam, E. B. (2020). Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1758789
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1758791
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2020.1756411
  • Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1760136
  • Fahmy, N. M., Al-Sayed, E., Moghannem, S., Azam, F., El-Shazly, M., & Singab, A. N. (2020). Breaking down the barriers to a natural antiviral agent: Antiviral activity and molecular docking of erythrina speciosa extract, fractions, and the major compound. Chemistry & Biodiversity, 17(2), e1900511. https://doi.org/10.1002/cbdv.201900511
  • Gatbonton-Schwager, T. N., Letterio, J. J., & Tochtrop, G. P. (2012). Bryonolic acid transcriptional control of anti-inflammatory and antioxidant genes in macrophages in vitro and in vivo. Journal of Natural Products, 75(4), 591–598. https://doi.org/10.1021/np200823p
  • Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2020.1751300
  • Gyebi, G. A., Ogunro, O. B., Adegunloye, A. P., Ogunyemi, O. M., & Afolabi, S. O. (2020). Potential Inhibitors of Coronavirus 3-Chymotrypsin-Like Protease (3CLpro): An in silico screening of Alkaloids and Terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2020.1764868
  • Habibzadeh, P., & Stoneman, E. K. (2020). The novel coronavirus: A Bird’s eye view. The International Journal of Occupational and Environmental Medicine, 11(2), 65–1965. https://doi.org/10.15171/ijoem.2020.1921
  • Hasan, A., Paray, B. A., Hussain, A., Qadir, F. A., Attar, F., Aziz, F. M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., & Shahpasand, K. (2020). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1754293
  • Hassan, S. T. S., Berchová-Bímová, K., Petráš, J., & Hassan, K. T. S. (2017). Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. South African Journal of Botany, 108, 90–94. https://doi.org/10.1016/j.sajb.2016.10.001
  • Hayashi, K., Minoda, K., Nagaoka, Y., Hayashi, T., & Uesato, S. (2007). Antiviral activity of berberine and related compounds against human cytomegalovirus. Bioorganic & Medicinal Chemistry Letters, 17(6), 1562–1564. https://doi.org/10.1016/j.bmcl.2006.12.085
  • He, M., Min, J. W., Kong, W. L., He, X. H., Li, J. X., & Peng, B. W. (2016). A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 115, 74–85. https://doi.org/10.1016/j.fitote.2016.09.011
  • Hsu, C. H., Hwang, K. C., Chao, C. L., Chang, S. G., Ho, M. S., Lin, J. G., Chang, H. H., Kao, S. T., Chen, Y. M., & Chou, P. (2008). An evaluation of the additive effect of natural herbal medicine on SARS or SARS-like infectious diseases in 2003: A randomized, double-blind, and controlled pilot study. Evidence-Based Complementary and Alternative Medicine: ECAM, 5(3), 355–362. https://doi.org/10.1093/ecam/nem035
  • Hung, T. C., Jassey, A., Liu, C. H., Lin, C. J., Lin, C. C., Wong, S. H., Wang, J. Y., Yen, M. H., & Lin, L. T. (2019). Berberine inhibits hepatitis C virus entry by targeting the viral E2 glycoprotein. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 53, 62–69. https://doi.org/10.1016/j.phymed.2018.09.025
  • Islam, R., Parves, R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–20. https://doi.org/10.1080/07391102.2020.1761883
  • Jain, J., Kumar, A., Narayanan, V., Ramaswamy, R. S., Sathiyarajeswaran, P., Devi, M. S., Kannan, M., & Sunil, S. (2019). Antiviral activity of ethanolic extract of Nilavembu Kudineer against dengue and chikungunya virus through in vitro evaluation. Journal of Ayurveda and Integrative Medicine. S0975-9476(18)30073-1, 1-7. https://doi.org/10.1016/j.jaim.2018.05.006
  • Jang, I. S., Baik, Y. S., Bae, S. J., Sun, S. H., Lee, J. S., & Han, C. H. (2009). An overview of the herbal remedies for Severe Acute Respiratory Syndrome (SARS) in WHO official report (2004). The Korean Journal of Internal Medicine, 30(3), 571–581.
  • Jiang, Z. Y., Liu, W. F., Zhang, X. M., Luo, J., Ma, Y. B., & Chen, J. J. (2013). Anti-HBV active constituents from Piper longum. Bioorganic & Medicinal Chemistry Letters, 23(7), 2123–2127. https://doi.org/10.1016/j.bmcl.2013.01.118
  • Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2020). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1760137
  • Kamalarajan, P., Muthuraman, S., Ganesh, M. R., & Valan, M. F. (2019). Phytochemical investigation of nilavembu kudineer chooranam ethyl acetate extract and its ability to reduce intracellular antioxidant levels in THP-I cells. European Journal of Medicinal Plants, 30(4), 1–13. https://doi.org/10.9734/ejmp/2019/v30i430187
  • Kaushik, U., Aeri, V., & Mir, S. R. (2015). Cucurbitacins—An insight into medicinal leads from nature. Pharmacognosy Reviews, 9(17), 12–18. https://doi.org/10.4103/0973-7847.156314
  • Kavinilavan, R., Mekala, P., Raja, M. J., Arthanari Eswaran, M., & Thirumalaisamy, G. (2017). Exploration of immunomodulatory effect of nilavembu kudineer chooranam against newcastle disease virus in backyard chicken. Journal of Pharmacognosy and Phytochemistry, 6, 749–751.
  • Khallouki, F., Owen, R. W., Silvente-Poirot, S., & Poirot, M. (2018). Bryonolic acid blocks cancer cell clonogenicity and invasiveness through the inhibition of fatty acid: Cholesteryl ester formation. Biomedicines, 6(1), 21. https://doi.org/10.3390/biomedicines6010021
  • Khan, R. J., Jha, R. K., Amera, G., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020a). Targeting SARS-Cov-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like Proteinase and 2’-O-RiboseMethyltransferase. Journal of Biomolecular Structure and Dynamics, 1–40. https://doi.org/10.1080/07391102.2020.1753577
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020b). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1751298
  • Kim, H. Y., Shin, H. S., Park, H., Kim, Y. C., Yun, Y. G., Park, S., Shin, H. J., & Kim, K. (2008). In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 41(2), 122–128. https://doi.org/10.1016/j.jcv.2007.10.011
  • Knipping, K., Garssen, J., & van’t, L. (2012). An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virology Journal, 9(1), 137. https://doi.org/10.1186/1743-422X-9-137
  • Kumar, D., Kumari, K., Jayaraj, A., Kumar, V., Kumar, R. V., Dass, S. K., Chandra, R., & Singh, P. (2020). Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1752310
  • Lam, K. Y., Ling, A. P. K., Koh, R. Y., Wong, Y. P., & Say, Y. H. (2016). A review on medicinal properties of orientin. Advances in Pharmacological Sciences, 2016, 4104595. https://doi.org/10.1155/2016/4104595
  • Lau, J. T., Leung, P. C., Wong, E. L. Y., Fong, C., Cheng, K. F., Zhang, S. C., Lam, C. W. K., Wong, V., Choy, K. M., & Ko, W. M. (2005b). The use of an herbal formula by hospital care workers during the severe acute respiratory syndrome epidemic in Hong Kong to prevent severe acute respiratory syndrome transmission, relieve influenza-related symptoms, and improve quality of life: A prospective cohort study. Journal of Alternative and Complementary Medicine, 11(1), 49–55. https://doi.org/10.1089/acm.2005.11.49
  • Lau, T. F., Leung, P. C., Wong, E. L. Y., Fong, C., Cheng, K. F., Zhang, S. C., Lam, C. W. K., Wong, V., Choy, K. M., & Ko, W. M. (2005a). Using herbal medicine as a means of prevention experience during the SARS crisis. The American Journal of Chinese Medicine, 33(3), 345–356. https://doi.org/10.1142/S0192415X05002965
  • Li, S.-Y., Chen, C., Zhang, H.-Q., Guo, H.-Y., Wang, H., Wang, L., Zhang, X., Hua, S.-N., Yu, J., Xiao, P.-G., Li, R.-S., & Tan, X. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Research, 67(1), 18–23. https://doi.org/10.1016/j.antiviral.2005.02.007
  • Li, Y. L., Ma, S. C., Yang, Y. T., Ye, S. M., & But, P. P. (2002). Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. Journal of Ethnopharmacology, 79(3), 365–368. https://doi.org/10.1016/S0378-8741(01)00410-X
  • Lobo-Galo, N., Terrazas-López, M., Martínez-Martínez, A., & Díaz-Sánchez, Á. G. (2020). FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1764393
  • Mattummal, R., Gopi, D. K., Parameswaran, S. R., & Narayana, S. K. K. (2018). Bioactive molecules in Siddha Polyherbal Nilavembu Kudineer alleviating symptoms of Dengue/Chikugunya. Traditional Medicine Research, 3(5), 215–229. https://doi.org/10.12032/TMR201813080
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Mohamed, S. M., Hassan, E. M., & Ibrahim, N. A. (2010). Cytotoxic and antiviral activities of aporphine alkaloids of Magnolia grandiflora L. Natural Product Research, 24(15), 1395–1402. https://doi.org/10.1080/14786410902906959
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–7. https://doi.org/10.1080/07391102.2020.1752802
  • Nakkeeran, C., Selvakumari, P., Kasthury, T., & Kumar, R. T. (2016). FTIR analysis on Nilavembu Kudineer Churanam and acetominaphen. Journal of Chemical and Pharmaceutical Research, 8(3), 634–639.
  • Neag, M. A., Mocan, A., Echeverría, J., Pop, R. M., Bocsan, C. I., Crişan, G., & Buzoianu, A. D. (2018). Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Frontiers in Pharmacology, 9, 557. https://doi.org/10.3389/fphar.2018.00557
  • Norgan, A. P., Coffman, P. K., Kocher, J. P. A., Katzmann, D. J., & Sosa, C. P. (2011). Multilevel parallelization of AutoDock 4.2. Journal of Cheminformatics, 3(1), 12. https://doi.org/10.1186/1758-2946-3-12
  • Oliveira, O. V. D., Gerd, B. R., Andrew, S P., & Luciano, T C. (2020). Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. Journal of Biomolecular Structure and Dynamics, 1–22. https://doi.org/10.1080/07391102.2020.1773318
  • Pant, S., Singh, M., Ravichandiran, V., Murty, U. S. N., & Srivastava, H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1757510
  • Patel, M. B., & Mishra, S. M. (2012). Magnoflorine from Tinospora cordifolia stem inhibits α-glucosidase and is antiglycemic in rats. Journal of Functional Foods, 4(1), 79–86. https://doi.org/10.1016/j.jff.2011.08.002
  • Peng, L., Kang, S., Yin, Z., Jia, R., Song, X., Li, L., Li, Z., Zou, Y., Liang, X., Li, L., He, C., Ye, G., Yin, L., Shi, F., Lv, C., & Jing, B. (2015). Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. International Journal of Clinical and Experimental Pathology, 8(5), 5217–5223.
  • Ram, A., Joseph, D. A., Balachandar, S., & Singh, V. P. (2009). Medicinal plants from Siddha system of medicine useful for treating respiratory diseases. Journal of Pharmaceutical Analysis, 1(2), 20.
  • Ramanathan, M., Subramanian, L., Poongodi, T., Manish, S., Muneeswari, E., Pavithra, P., & Pugalendran, S. (2019). Formulation and evaluation of Nilavembu kudineer capsules. Asian Journal of Pharmaceutical Research and Development, 7(1), 41–45. https://doi.org/10.22270/ajprd.v7i1.468
  • Reddy, V. L., Reddy, S. M., Ravikanth, V., Krishnaiah, P., Goud, T. V., Rao, T. P., Ram, T. S., Gonnade, R. G., Bhadbhade, M., & Venkateswarlu, Y. (2005). A new bis-andrographolide ether from Andrographis paniculata nees and evaluation of anti-HIV activity. Nat. Prod. Res, 19(3), 223–230. https://doi.org/10.1080/14786410410001709197
  • Sarma, P., Sekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., Singh, S., Kumar, H., Prakash, A., Dhibar, D. P., & Medhi, B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1753580
  • Sharma, P., Prakash, O., Shukla, A., Rajpurohit, C. S., Vasudev, P. G., Luqman, S., Srivastava, S. K., Pant, A. B., & Khan, F. (2016). Structure-activity relationship studies on holy basil (Ocimum sanctum L.) based flavonoid orientin and its analogue for cytotoxic activity in liver cancer cell line HepG2. Combinatorial Chemistry & High Throughput Screening, 19(8), 656–666. https://doi.org/10.2174/1386207319666160709192801
  • Shukla, P., Jain, S. D., Agrawal, A., & Gupta, A. K. (2019). Indian herbal plants used as antipyretic: A review. International Journal of Pharmacy and Life Sciences, 10(11/12), 6406–6409.
  • Sinha, S. K., Shakya, A., Prasad, S. K., Singh, S., Gurav, N. S., Prasad, R. S., & Gurav, S. S. (2020). An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1762741
  • Systemes, D. (2015). BIOVIA, discovery studio modeling environment. Release 4.5. Dassault Systemes.
  • Tan, J., Wang, J., Yang, C., Zhu, C., Guo, G., Tang, J., & Shen, H. (2019). Antimicrobial characteristics of Berberine against prosthetic joint infection-related Staphylococcus aureus of different multi-locus sequence types. BMC Complementary and Alternative Medicine, 19(1), 218. https://doi.org/10.1186/s12906-019-2558-9
  • Tanaka, S., Uno, C., Akimoto, M., Tabata, M., Honda, C., & Kamisako, W. (1991). Anti-allergic effect of bryonolic acid from Luffa cylindrica cell suspension cultures. Planta Medica, 57(6), 527–530. https://doi.org/10.1055/s-2006-960199
  • Umesh, K., D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1763202
  • Varghese, F. S., Thaa, B., Amrun, S. N., Simarmata, D., Rausalu, K., Nyman, T. A., Merits, A., McInerney, G. M., Ng, L., & Ahola, T. (2016). The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase signaling. Journal of Virology, 90(21), 9743–9757. https://doi.org/10.1128/JVI.01382-16
  • Veeramachaneni, G. K., Thunuguntla, V. B. S. C., Janaki Ram, B., & Bondili, J. S. (2020). Structural and Simulation analysis of hot spot residues interactions of SARS-CoV 2 with human ACE2 receptor. Journal of Biomolecular Structure and Dynamics, 1–24. https://doi.org/10.1080/07391102.2020.1773318
  • Wahedi, H. M., Ahmad, S., & Abbasi, S. W. (2020). Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1762743
  • Wang, H., Li, K., Ma, L., Wu, S., Hu, J., Yan, H., Jiang, J., & Li, Y. (2017). Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy. Virology Journal, 14(1), 2. https://doi.org/10.1186/s12985-016-0674-4
  • Wang, Q., Wu, J., Wang, H., Gao, Y., Liu, Q., Mu, A., Ji, W., Yan, L., Zhu, Y., Zhu, C., Fang, X., Yang, X., Huang, Y., Gao, H., Liu, F., Ge, J., Sun, Q., Yang, X., Xu, W., … Rao, Z. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904. https://doi.org/10.1016/j.cell.2020.03.045
  • Wen, C. C., Shyur, L. F., Jan, J. T., Liang, P. H., Kuo, C. J., Arulselvan, P., Wu, J. B., Kuo, S. C., & Yang, N. S. (2011). Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. Journal of Traditional and Complementary Medicine, 1(1), 41–50. https://doi.org/10.1016/S2225-4110(16)30055-4
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., & Sheng, J. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Wu, Y., Li, J-q., Kim, Y-j., Wu, J., Wang, Q., & Hao, Y. (2011). In vivo and in vitro antiviral effects of berberine on influenza virus. Chinese Journal of Integrative Medicine, 17(6), 444–452. https://doi.org/10.1007/s11655-011-0640-3
  • Xie, Y., Liu, X., & Zhou, P. (2020). In vitro antifungal effects of berberine against Candida spp. In planktonic and biofilm conditions. Drug Des Devel Ther, 14, 87–101. https://doi.org/10.2147/DDDT.S230857
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024
  • Yadav, M., Song, F., Huang, J., Chakravarti, A., & Jacob, N. K. (2018). Ocimum flavone Orientin as a countermeasure for thrombocytopenia. Scientific Reports, 8(1), 5075. https://doi.org/10.1038/s41598-018-23419-x
  • Yu, H. H., Kim, K. J., Cha, J. D., Kim, H. K., Lee, Y. E., Choi, N. Y., & You, Y. O. (2005). Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food, 8(4), 454–461. https://doi.org/10.1089/jmf.2005.8.454
  • Zhang, L., Lin, D., Kusov, Y., Nian, Y., Ma, Q., Wang, J., von Brunn, A., Leyssen, P., Lanko, K., Neyts, J., de Wilde, A., Snijder, E. J., Liu, H., & Hilgenfeld, R. (2020a). α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. Journal of Medicinal Chemistry, 63(9), 4562–4578. https://doi.org/10.1021/acs.jmedchem.9b01828
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020b). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, NY.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhang, M. F., & Shen, Y. Q. (1989). Antidiarrheal and anti-inflammatory effects of berberine. Zhongguo Yao li Xue Bao = Acta Pharmacologica Sinica, 10(2), 174–176. https://doi.org/10.1038/aps.2016.125
  • Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). Coronaviruses—drug discovery and therapeutic options. Nature Reviews. Drug Discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.