3,949
Views
22
CrossRef citations to date
0
Altmetric
Research Articles

Constituents of buriti oil (Mauritia flexuosa L.) like inhibitors of the SARS-Coronavirus main peptidase: an investigation by docking and molecular dynamics

, , ORCID Icon, &
Pages 4610-4617 | Received 19 May 2020, Accepted 01 Jun 2020, Published online: 22 Jun 2020

References

  • Abraham, M. J., Van Der Spoel, D., Lindahl, E., Hess, B., & the GROMACS development team. (2018). GROMACS user manual version 2018.1. www.gromacs.org
  • Albuquerque, M. L. S., Guedes, I., Alcantara, P., Jr., Moreira, S. G. C., Barbosa Neto, N. M., Correa, D. S., & Zilio, S. C. (2005). Characterization of buriti (Mauritia flexuosa L.) oil by absorption and emission spectroscopies. Journal of the Brazilian Chemical Society, 16(6a), 1113–1117. https://doi.org/10.1590/S0103-50532005000700004
  • Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining Docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531–568. https://doi.org/10.1002/med.20067
  • Arcanjo, D. D. R., Vasconcelos, A. G., Nascimento, L. A., Mafud, A. C., Plácido, A., Alves, M. M. M., Delerue-Matos, C., Bemquerer, M. P., Vale, N., Gomes, P., Oliveira, E. B., Lima, F. C. A., Mascarenhas, Y. P., Carvalho, F. A. A., Simonsen, U., Ramos, R. M., & Leite, J. R. S. A. (2017). Structure-function studies of BPP-BrachyNH 2 and synthetic analogues thereof with Angiotensin I-converting enzyme. European Journal of Medicinal Chemistry, 139, 401–411. https://doi.org/10.1016/j.ejmech.2017.08.019
  • Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E.-M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsc, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
  • Barros, E. M. L., Lira, S. R. d S., Lemos, S. I. A., Barros, T. L. e., & Rizo, M. D. S. (2015). Study of buriti (Mauritia flexuosa L.) cream in the healing process. ConScientiae Saúde, 13(4), 503–610. https://doi.org/10.5585/conssaude.v13n4.5175
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bouchentouf, S., & Missoum, N. (2020). Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel Coronasvirus (COVID-19): Molecular docking study. ChemRxiv, 1–14.
  • Carneiro, B. T., & Carneiro, J. G. M. (2011). Frutos e polpa desidratada buriti (Mauritia flexuosa L.): Aspectos físicos, químicos e tecnológicos. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 6, 105–111.
  • Fauci, A. S., Lane, H. C., & Redfield, R. R. (2020). Covid-19- navigating the uncharted. The New England Journal of Medicine, 382(13), 1268–1269. https://doi.org/10.1056/NEJMe2002387
  • Ferreira, E. T., Santos, E. S., Monteiro, J. S., Gomes, M. S. M., Menezes, R. A. O., & Sousa, M. J. C. (2019). The use of medicinal and phytotherapy plants: An integrational review on the nurses performance. Brazilian Journal of Health Review, 2, 1511–1523.
  • Guedes, I. A., Magalhães, C. S., & Dardenne, L. E. (2014). Capítulo 9: Atracamento molecular. In VERLI, H. Bioinformática da biologia à flexibilidade molecular (1a ed., pp. 189–208). SBBq.
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server issue), w368–w371. https://doi.org/10.1093/nar/gki464
  • Goodsell, D. S. (2005). Computational docking of biomolecular complexes with Auto-Dock. In Golemis EA, Adams PD (Eds.), Protein-protein interactions: A molecular cloning mannual (2nd ed.). Cold Spring Harbor Laboratory Press.
  • Goodsell, D. S., Morris, G., & Olson, A. J. (1996). Automated docking of flexible ligands: Applications of AutoDock. Journal of Molecular Recognition, 9(1), 1–5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  • Kerrigan, J. E. (2013). Molecular dynamics simulations in drug design. In In silico models for drug discovery (pp. 95–113). Humana Press.
  • Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock4 and AutoDock Vina with AutoDockTools: A tutorial. The Scripps Research Institute.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Kovalski, L. M., & Obara, A. T. (2013). The ethno-botanical study of medicinal plants at school. Ciência & Educação (Bauru), 19(4), 911–927. https://doi.org/10.1590/S1516-73132013000400009
  • Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., & Hsueh, P.-R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924https://doi.org/10.1016/j.ijantimicag.2020.105924
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lee, T.-W., Cherney, M. M., Liu, J., James, K. E., Powers, J. C., Eltis, L. D., & James, M. N. G. (2007). Crystal structures reveal an induced-fit binding of a substrate-like aza-peptide epoxide to SARS Coronavirus main peptidase. Journal of Molecular Biology, 366(3), 916–932. https://doi.org/10.1016/j.jmb.2006.11.078
  • Lemkul, J. A. (2019). From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 1–53. https://doi.org/10.33011/livecoms.1.1.5068
  • Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human Coronavirus diseases. ACS Central Science, 6(3), 315–331. https://doi.org/10.1021/acscentsci.0c00272
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Monego, D. L., Rosa, M. B., & Nascimento, P. C. (2017). Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review. Food Chemistry, 217, 37–44. https://doi.org/10.1016/j.foodchem.2016.08.073
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for ligand-receptor docking. Current Protocols in Bioinformatics, 24(1), 8–14. https://doi.org/10.1002/0471250953.bi0814s24
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Namba, A. M., Silva, V. B., & Silva, C. H. T. P. (2008). Dinâmica molecular: teoria e aplicações de planejamento de fármacos. Eclética Química, 33(4), 13–24. https://doi.org/10.1590/S0100-46702008000400002
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Piccirillo, E., & Amaral, A. T. (2018). Busca virtual de compostos bioativos: Conceitos e aplicações. Química Nova, 41, 662–677. https://doi.org/10.21577/0100-4042.20170210
  • Ramos, R. M., Perez, J. M., Baptista, L. A., & de Amorim, H. L. N. (2012). Interaction of wild type, G68R and L125M isoforms of the arylamine-N-acetyltransferase from Mycobacterium tuberculosis with isoniazid: a computational study on a new possible mechanism of resistance. Journal of Molecular Modeling, 18(9), 4013–4024. https://doi.org/10.1007/s00894-012-1383-6
  • Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., & Sanner, M. F. (2015). AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. PLOS Computational Biology, 11(12), e1004586. https://doi.org/10.1371/journal.pcbi.1004586
  • Rocha, J. A., Rego, N. C. S., Carvalho, B. T. S., Silva, F. I., Sousa, J. A., Ramos, R. M., Passos, I. N. G., de Moraes, J., Leite, J. R. S. A., & Lima, F. C. A. (2018). Computational quantum chemistry, molecular docking, and ADMET predictions of imidazole alkaloids of Pilocarpus microphyllus with schistosomicidal properties. PLOS One, 13(6), e0198476. https://doi.org/10.1371/journal.pone.0198476
  • Samant, L. R., & Javle, V. R. K. (2020). Comparative docking analysis of rational drugs against COVID-19 main protease. ChemRxiv, 1–21.
  • Schrödinger LLC. (2018).The PyMOL molecular graphics system (Version 1.2r3pre). Schrödinger, LLC.
  • Sharma, A., Tiwari, V., & Sowdhamini, R. (2020). Computational search for potential COVID-19 drugs from FDA-approved drugs and small molecules of natural origin identifies several anti-virals and plant products. ChemRxiv, 1–61.
  • Silva, S. M., Sampaio, K. A., Taham, T., Rocco, S. A., Ceriani, R., & Meirelles, A. J. A. (2009). Characterization of oil extracted from buriti fruit (Mauritia flexuosa) grown in the Brazilian Amazon region. Journal of the American Oil Chemists' Society, 86(7), 611–616. https://doi.org/10.1007/s11746-009-1400-9
  • Tautermann, C. S., Seeliger, D., & Kriegl, J. M. (2015). What can we learn from molecular dynamics simulations for GPCR drug design? Computational and Structural Biotechnology Journal, 13, 111–121. https://doi.org/10.1016/j.csbj.2014.12.002
  • The Lancet. (2020). Global coalition to accelerate COVID-19 clinical research in resource-limited settings. The Lancet, 395(10233), 1322–1325.
  • Totrov, M., & Abagyan, R. (2008). Flexible ligand docking to multiple receptor conformations: a practical alternative. Current Opinion in Structural Biology, 18(2), 178–184. https://doi.org/10.1016/j.sbi.2008.01.004
  • Van der Spoel, D., Van Maaren, P. J., & Berendsen, H. J. C. (1998). A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. The Journal of Chemical Physics, 108(24), 10220–10230. https://doi.org/10.1063/1.476482
  • Wong, S. H., Lui, R. N., & Sung, J. J. (2020). Covid-19 and the digestive system. Journal of Gastroenterology and Hepatology, 35(5), 744–748. https://doi.org/10.1111/jgh.15047
  • World Health Organization (WHO). (2020). Retrieved April 14, 2020, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov.
  • Xu, Z., Peng, C., Shi, Y., Zhu, Z., Mu, K., Wang, X., & Zhu, W. (2020). Nelfinavir was predicted to be a potential inhibitor of 2019 nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv, 1–20.
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.