4,225
Views
27
CrossRef citations to date
0
Altmetric
Research Articles

Promising inhibitors of main protease of novel corona virus to prevent the spread of COVID-19 using docking and molecular dynamics simulation

, , , , , , , , , & show all
Pages 4671-4685 | Received 15 May 2020, Accepted 03 Jun 2020, Published online: 22 Jun 2020

References

  • Agarwal, A., Nagi, N., Chatterjee, P., Sarkar, S., Mourya, D., Sahay, R., & Bhatia, R. (2020). Guidance for building a dedicated health facility to contain the spread of the 2019 novel coronavirus outbreak. Indian Journal of Medical Research. https://doi.org/10.4103/ijmr.IJMR_518_20
  • Agarwal, G., Gupta, S., Gabrani, R., Gupta, A., Chaudhary, V. K., & Gupta, V. (2019). Virtual screening of inhibitors against envelope glycoprotein of Chikungunya Virus: A drug repositioning approach. Bioinformation, 15(6), 439–447. https://doi.org/10.6026/97320630015439
  • Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12(3), 254. https://doi.org/10.3390/v12030254
  • Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., & Lv, W. (2020). Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology, 1–23. https://doi.org/10.1148/radiol.2020200642
  • Akhmadiev, N. S., Galimova, A. M., Akhmetova, V. R., Khairullina, V. R., Galimova, R. A., Agletdinov, E. F., Ibragimov, A. G., & Kataev, V. A. (2019). Molecular docking and preclinical study of five-membered S,S-palladaheterocycle as hepatoprotective agent. Advanced Pharmaceutical Bulletin, 9(4), 674–684. https://doi.org/10.15171/apb.2019.079
  • Al-Anazi, M., Al-Najjar, B. O., & Khairuddean, M. (2018). Structure-based drug design studies toward the discovery of novel chalcone derivatives as potential epidermal growth factor receptor (EGFR) inhibitors. Molecules, 23(12), 3203. https://doi.org/10.3390/molecules23123203
  • Al-Refaei, M. A., Makki, R. M., & Ali, H. M. (2020). Structure prediction of transferrin receptor protein 1 (TfR1) by homology modelling, docking, and molecular dynamics simulation studies. Heliyon, 6(1), e03221. https://doi.org/10.1016/j.heliyon.2020.e03221
  • Almazan, F., Galan, C., & Enjuanes, L. (2004). The nucleoprotein is required for efficient coronavirus genome replication. Journal of Virology, 78(22), 12683–12688. https://doi.org/10.1128/JVI.78.22.12683-12688.2004
  • Arshad Ali, S., Baloch, M., Ahmed, N., Arshad Ali, A., & Iqbal, A. (2020). The outbreak of coronavirus disease 2019 (COVID-19) – An emerging global health threat. Journal of Infection and Public Health, 13(4), 644–646. https://doi.org/10.1016/j.jiph.2020.02.033
  • Babadaei, M. M. N., Hasan, A., Vahdani, Y., Bloukh, S. H., Sharifi, M., & Kachooei, E. (2020). Development of remdesivir repositioning as a nucleotide analog against COVID-19 RNA dependent RNA polymerase. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1767210
  • Bai, J., Ma, X., & Sun, X. (2020). Investigation on the interaction of food colorant Sudan III with bovine serum albumin using spectroscopic and molecular docking methods. The Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering, 55, 1–8. https://doi.org/10.1080/10934529.2020.1729616
  • Balaji, B., & Ramanathan, M. (2012). Prediction of estrogen receptor β ligands potency and selectivity by docking and MM-GBSA scoring methods using three different scaffolds . Journal of Enzyme Inhibition and Medicinal Chemistry, 27(6), 832–844. https://doi.org/10.3109/14756366.2011.618990
  • Balasubramanian, P. K., Balupuri, A., Bhujbal, S. P., & Cho, S. J. (2019). 3D-QSAR-aided design of potent c-Met inhibitors using molecular dynamics simulation and binding free energy calculation. Journal of Biomolecular Structure & Dynamics, 37(8), 2165–2178. https://doi.org/10.1080/07391102.2018.1479309
  • Basit, A., Ali, T., & Rehman, S. U. (2020). Truncated human angiotensin converting enzyme 2; A potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1768150
  • Bea, I., Gotsev, M. G., Ivanov, P. M., Jaime, C., & Kollman, P. A. (2006). Chelate effect in cyclodextrin dimers: A computational (MD, MM/PBSA, and MM/GBSA) study. The Journal of Organic Chemistry, 71(5), 2056–2063. https://doi.org/10.1021/jo052469o
  • Berkhout, B., & van Hemert, F. (2015). On the biased nucleotide composition of the human coronavirus RNA genome. Virus Research, 202, 41–47. https://doi.org/10.1016/j.virusres.2014.11.031
  • Beura, S., & Prabhakar, C. (2020). In-silico strategies for probing chloroquine based inhibitors against SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–25. https://doi.org/10.1080/07391102.2020.1772111
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2020). Identification of bioactive molecules from Tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1766572
  • Boldog, P., Tekeli, T., Vizi, Z., Denes, A., Bartha, F. A., & Rost, G. (2020). Risk assessment of novel coronavirus COVID-19 outbreaks outside China. Journal of Clinical Medicine, 9(2), 1–12. https://doi.org/10.3390/jcm9020571
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1758788
  • Borkotoky, S., & Banerjee, M. (2020). A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2020.1774419
  • Boursnell, M. E., Brown, T. D., Foulds, I. J., Green, P. F., Tomley, F. M., & Binns, M. M. (1987). Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. Journal of General Virology., 68(1), 57–77. https://doi.org/10.1099/0022-1317-68-1-57
  • Burley, S. K., Berman, H. M., Christie, C., Duarte, J. M., Feng, Z., Westbrook, J., Young, J., & Zardecki, C. (2018). RCSB protein data bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Science: A Publication of the Protein Society, 27(1), 316–330. https://doi.org/10.1002/pro.3331
  • Cai, X., Gao, C., Su, B., Tan, F., Yang, N., & Wang, G. (2018). Expression profiling and microbial ligand binding analysis of high-mobility group box-1 (HMGB1) in turbot (Scophthalmus maximus L.). Fish & Shellfish Immunology, 78, 100–108. https://doi.org/10.1016/j.fsi.2018.04.025
  • Cob-Calan, N. N., Chi-Uluac, L. A., Ortiz-Chi, F., Cerqueda-García, D., Navarrete-Vázquez, G., Ruiz-Sánchez, E., & Hernández-Núñez, E. (2019). Molecular docking and dynamics simulation of protein beta-tubulin and antifungal cyclic lipopeptides. Molecules, 24(18), 3387. https://doi.org/10.3390/molecules24183387
  • Cummins, P. L., Kannappan, B., & Gready, J. E. (2019). Ab initio molecular dynamics simulation and energetics of the ribulose-1,5-biphosphate carboxylation reaction catalyzed by Rubisco: Toward elucidating the stereospecific protonation mechanism. The Journal of Physical Chemistry. B, 123(12), 2679–2686. https://doi.org/10.1021/acs.jpcb.8b12088
  • Du, J., Sun, H., Xi, L., Li, J., Yang, Y., Liu, H., & Yao, X. (2011). Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM-GBSA calculation. Journal of Computational Chemistry, 32(13), 2800–2809. https://doi.org/10.1002/jcc.21859
  • Duan, L., & Zhu, G. (2020). Psychological interventions for people affected by the COVID-19 epidemic. The Lancet Psychiatry, 7(4), 300–302. https://doi.org/10.1016/S2215-0366(20)30073-0
  • Elfiky, A. A. (2020a). Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.21203/rs.3.rs-22458/v1
  • Elfiky, A. A. (2020b). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1761882
  • Elfiky, A. A., & Azzam, E. B. (2020). Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1758789
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1758791
  • Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1760136
  • Genheden, S., Kuhn, O., Mikulskis, P., Hoffmann, D., & Ryde, U. (2012). The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. Journal of Chemical Information and Modeling, 52(8), 2079–2088. https://doi.org/10.1021/ci3001919
  • Greenidge, P. A., Kramer, C., Mozziconacci, J. C., & Sherman, W. (2014). Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA. Journal of Chemical Information and Modeling, 54(10), 2697–2717. https://doi.org/10.1021/ci5003735
  • Greenidge, P. A., Lewis, R. A., & Ertl, P. (2016). Boosting pose ranking performance via rescoring with MM-GBSA. Chemical Biology & Drug Design, 88(3), 317–328. https://doi.org/10.1111/cbdd.12763
  • Gupta, A., Gandhimathi, A., Sharma, P., & Jayaram, B. (2007). ParDOCK: An all atom energy based Monte Carlo docking protocol for protein–ligand complexes. Protein and Peptide Letters, 14(7), 632–646. https://doi.org/10.2174/092986607781483831
  • Jagannadh, B., Kunwar, A. C., Thangavelu, R. P., & Osawa, E. (1996). New technique for conformational sampling of cyclic molecules using the AMBER force field: Application to 18-crown-6. The Journal of Physical Chemistry, 100(34), 14339–14342. https://doi.org/10.1021/jp960929z
  • Ji, T., Chen, H. L., Xu, J., Wu, L. N., Li, J. J., & Chen, K. (2020). Lockdown contained the spread of 2019 novel coronavirus disease in Huangshi city, China: Early epidemiological findings. Clinical Infectious Diseases, 1–17. https://doi.org/10.1093/cid/ciaa390
  • Kirby, M. E., Simperler, A., Krevor, S., Weiss, D. J., & Sonnenberg, J. L. (2018). Computational tools for calculating log β values of geochemically relevant uranium organometallic complexes. The Journal of Physical Chemistry. A, 122(40), 8007–8019. https://doi.org/10.1021/acs.jpca.8b06863
  • Kumar, D., Kumari, K., Jayaraj, A., & Singh, P. (2019). Development of a theoretical model for the inhibition of nsP3 protease of Chikungunya virus using pyranooxazoles. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2019.1650830
  • Kumar, D., Singh, P., Jayaraj, A., Kumar, V., Kumari, K., & Patel, R. (2019). A theoretical model to study the interaction of Erythro-Noscapines with nsP3 protease of Chikungunya Virus. ChemistrySelect, 4(17), 4892–4900. https://doi.org/10.1002/slct.201803360
  • Kumari, K., Vishvakarma, V. K., Singh, P., Patel, R., & Chandra, R. (2017). Microwave: An important and efficient tool for the synthesis of biological potent organic compounds. Current Medicinal Chemistry, 24(41), 4579–4595. https://doi.org/10.2174/0929867324666170529100929
  • Kumari, M., Maurya, J. K., Singh, U. K., Khan, A. B., Ali, M., Singh, P., & Patel, R. (2014). Spectroscopic and docking studies on the interaction between pyrrolidinium based ionic liquid and bovine serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 124, 349–356. https://doi.org/10.1016/j.saa.2014.01.012
  • Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/S0169-409X(96)00423-1 https://doi.org/10.1016/j.addr.2012.09.019
  • Lohidakshan, K., Rajan, M., Ganesh, A., Paul, M., & Jerin, J. (2018). Pass and Swiss ADME collaborated in silico docking approach to the synthesis of certain pyrazoline spacer compounds for dihydrofolate reductase inhibition and antimalarial activity. Bangladesh Journal of Pharmacology, 13(1), 23–29. https://doi.org/10.3329/bjp.v13i1.33625
  • Madhavaram, M., Nampally, V., Gangadhari, S., Palnati, M. K., & Tigulla, P. (2019). High-throughput virtual screening, ADME analysis, and estimation of MM/GBSA binding-free energies of azoles as potential inhibitors of Mycobacterium tuberculosis H37Rv. Journal of Receptor and Signal Transduction Research, 39(4), 312–320. https://doi.org/10.1080/10799893.2019.1660895
  • Mitra, S., Das, A., Ghosh, D., & Sengupta, A. (2019). Postoperative systemic acyclovir in Juvenile-onset recurrent respiratory papillomatosis: The outcome. Ear, Nose, & Throat Journal, 98(1), 28–31. https://doi.org/10.1177/0145561318823311
  • Morris, K. F., Geoghegan, R. M., Palmer, E. E., George, M., Jr., & Fang, Y. (2020). Molecular dynamics simulation study of AG10 and tafamidis binding to the Val122Ile transthyretin variant. Biochemistry and Biophysics Reports, 21, 100721. https://doi.org/10.1016/j.bbrep.2019.100721
  • Mukherjee, G., & Jayaram, B. (2013). A rapid identification of hit molecules for target proteins via physico-chemical descriptors. Physical Chemistry Chemical Physics: PCCP, 15(23), 9107–9116. https://doi.org/10.1039/c3cp44697b
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–6. https://doi.org/10.1080/07391102.2020.1752802
  • Naz, S., Farooq, U., Khan, S., Sarwar, R., Mabkhot, Y. N., & Saeed, M. (2020). Pharmacophore model-based virtual screening, docking, biological evaluation and molecular dynamics simulations for inhibitors discovery against alpha-tryptophan synthase from Mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1715259
  • Nazarian, S. M., Shaon, K. Y., Schwankhaus, J. D., Chacko, J. G., Hudgins, P. A., & Brat, D. J. (2015). Bilateral optic neuropathy after erythematous rash. Bilateral anterior optic neuropathy due to RMSF. Journal of Neuro-Ophthalmology: The Official Journal of the North American Neuro-Ophthalmology Society, 35(2), 201–204. https://collections.lib.utah.edu/ark:/87278/s66b08p3 https://doi.org/10.1097/WNO.0000000000000261
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pola, M., Rajulapati, S. B., Potla Durthi, C., Erva, R. R., & Bhatia, M. (2018). In silico modelling and molecular dynamics simulation studies on L-Asparaginase isolated from bacterial endophyte of Ocimum tenuiflorum. Enzyme and Microbial Technology, 117, 32–40. https://doi.org/10.1016/j.enzmictec.2018.06.005
  • Purohit, R. (2014). Role of ELA region in auto-activation of mutant KIT receptor: A molecular dynamics simulation insight. Journal of Biomolecular Structure & Dynamics, 32(7), 1033–1046. https://doi.org/10.1080/07391102.2013.803264
  • Rajendran, V., Gopalakrishnan, C., & Sethumadhavan, R. (2018). Pathological role of a point mutation (T315I) in BCR-ABL1 protein –A computational insight. Journal of Cellular Biochemistry, 119(1), 918–925. https://doi.org/10.1002/jcb.26257
  • Roe, D. R., & Cheatham, T. E., 3rd. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roe, D. R., & Cheatham, T. E., 3rd. (2018). Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data. Journal of Computational Chemistry, 39(25), 2110–2117. https://doi.org/10.1002/jcc.25382
  • Sarma, P., Shekhar, N., Prajapat, M., Avti, P., Kaur, H., & Kumar, S. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1753580
  • Sharma, J., Bhardwaj, V. K., Das, P., & Purohit, R. (2020). Identification of naturally originated molecules as γ-aminobutyric acid receptor antagonist. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1720818
  • Singh, P., Kumar, D., Vishvakarma, V. K., Yadav, P., Jayaraj, A., & Kumari, K. (2019). Computational approach to study the synthesis of noscapine and potential of stereoisomers against nsP3 protease of CHIKV. Heliyon, 5(12), e02795. https://doi.org/10.1016/j.heliyon.2019.e02795
  • Singh, P., Kumar, P., Katyal, A., Kalra, R., Dass, S. K., Prakash, S., & Chandra, R. (2010). Synthesis and electrochemical studies of charge-transfer complexes of thiazolidine-2,4-dione with sigma and pi acceptors. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 75(3), 983–991. https://doi.org/10.1016/j.saa.2009.12.019
  • Singh, R., Bhardwaj, V., & Purohit, R. (2020). Identification of a novel binding mechanism of Quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1711809
  • Sinha, S. K., Shakya, A., Prasad, S. K., Singh, S., Gurav, N. S., & Prasad, R. S. (2020). An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1762741
  • Song, L. F., Lee, T. S., Zhu, C., York, D. M., & Merz, K. M., Jr. (2019). Using AMBER18 for relative free energy calculations. Journal of Chemical Information and Modeling, 59(7), 3128–3135. https://doi.org/10.1021/acs.jcim.9b00105
  • Thomas-Ruddel, D., Winning, J., Dickmann, P., Ouart, D., Kortgen, A., & Janssens, U. (2020). Coronavirus disease 2019 (COVID-19): update for anesthesiologists and intensivists March 2020. Anaesthesist, 1–10. https://doi.org/10.1007/s00101-020-00760-3
  • Vishvakarma, V. K., Kumari, K., Patel, R., Dixit, V. S., Singh, P., Mehrotra, G. K., Chandra, R., & Chakrawarty, A. K. (2015). Theoretical model to investigate the alkyl chain and anion dependent interactions of Gemini surfactant with bovine serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 143, 319–323. https://doi.org/10.1016/j.saa.2015.01.068
  • Vishvakarma, V. K., Shukla, N., Reetu Kumari, K., Patel, R., & Singh, P. (2019). A model to study the inhibition of nsP2B–nsP3 protease of dengue virus with imidazole, oxazole, triazole thiadiazole, and thiazolidine based scaffolds. Heliyon, 5(8), e02124. https://doi.org/10.1016/j.heliyon.2019.e02124
  • Vishvakarma, V. K., Singh, P., Dubey, M., Kumari, K., Chandra, R., & Pandey, N. D. (2013). Quantitative structure–activity relationship analysis of thiazolidineones: Potent antidiabetic compounds. Drug Metabolism and Drug Interactions, 28(1), 31–47. https://doi.org/10.1515/dmdi-2012-0036
  • Zhang, Z., Zeng, X. H., Xia, X. M., & Lingle, C. J. (2009). N-terminal inactivation domains of beta subunits are protected from trypsin digestion by binding within the antechamber of BK channels. The Journal of General Physiology, 133(3), 263–282. https://doi.org/10.1085/jgp.200810079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.