3,816
Views
48
CrossRef citations to date
0
Altmetric
Research Articles

Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study

, , , , &
Pages 4633-4646 | Received 18 May 2020, Accepted 02 Jun 2020, Published online: 23 Jun 2020

  • Aanouz, I., Belhassan, A., El-Khatabi, K., Lakhlifi, T., El-Ldrissi, M., & Bouachrine, M. (2020). Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–9. https://doi.org/10.1080/07391102.2020.1758790 32306860
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aouadi, W., Blanjoie, A., Vasseur, J. J., Debart, F., Canard, B., & Decroly, E. (2017). Binding of the methyl donor S-adenosyl-l-methionine to Middle East respiratory syndrome coronavirus 2’-o-methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10. Journal of Virology, 91(5), e02217-16. https://doi.org/10.1128/JVI.02217-16
  • Arabi, Y. M., Asiri, A. Y., Assiri, A. M., Aziz Jokhdar, H. A., Alothman, A., Balkhy, H. H., AlJohani, S., Al Harbi, S., Kojan, S., Al Jeraisy, M., Deeb, A. M., Memish, Z. A., Ghazal, S., Al Faraj, S., Al-Hameed, F., AlSaedi, A., Mandourah, Y., Al Mekhlafi, G. A., Sherbeeni, N. M., … Hussein, M. A, … and the Saudi Critical Care Trials group (2020). Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial . Trials, 21(1), 8. https://doi.org/10.1186/s13063-019-3846-x
  • Bennardo, F., Buffone, C., & Giudice, A. (2020). New therapeutic opportunities for COVID-19 patients with Tocilizumab: Possible correlation of interleukin-6 receptor inhibitors with osteonecrosis of the jaws. Oral Oncology, 106, 104659. https://doi.org/10.1016/j.oraloncology.2020.104659
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Binder, K. (1997). Applications of Monte Carlo methods to statistical physics. Reports on Progress in Physics, 60(5), 487–559. https://doi.org/10.1088/0034-4885/60/5/001
  • Bitencourt-Ferreira, G., & de Azevedo, W. F. Jr. (2019). Docking with SwissDock. Methods in Molecular Biology (Clifton, N.J.).), 2053, 189–202. https://doi.org/10.1007/978-1-4939-9752-7_12
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–10. https://doi.org/10.1080/07391102.2020.1758788 32306836
  • Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., & Decroly, E. (2010). In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathogens, 6(4), e1000863. https://doi.org/10.1371/journal.ppat.1000863
  • Canrong Wu, Y. L., Y., Yang, P., Zhang, W., Zhong, Y., Wang, Q., Wang, Y., Xu, M., Li, X. z., Li, M., Zheng, L., Chenb, & H. Li, (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5),766-788.
  • Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. The New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
  • Cao, Y. C., Deng, Q. X., & Dai, S. X. (2020). Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Medicine and Infectious Disease., 101647. https://doi.org/10.1016/j.tmaid.2020.101647
  • Cha, Y., Erez, T., Reynolds, I. J., Kumar, D., Ross, J., Koytiger, G., Kusko, R., Zeskind, B., Risso, S., Kagan, E., Papapetropoulos, S., Grossman, I., & Laifenfeld, D. (2018). Drug repurposing from the perspective of pharmaceutical companies. British Journal of Pharmacology, 175(2), 168–180. https://doi.org/10.1111/bph.13798
  • Chen, Y., & Guo, D. (2016). Molecular mechanisms of coronavirus RNA capping and methylation. Virologica Sinica, 31(1), 3–11. https://doi.org/10.1007/s12250-016-3726-4
  • Chrebet, G. L., Wisniewski, D., Perkins, A. L., Deng, Q., Kurtz, M. B., Marcy, A., & Parent, S. A. (2005). Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor. Journal of Biomolecular Screening, 10(4), 355–364. https://doi.org/10.1177/1087057104273333
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), Methods Mol. Biol., 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19 25618350
  • Decroly, E., Debarnot, C., Ferron, F., Bouvet, M., Coutard, B., Imbert, I., Gluais, L., Papageorgiou, N., Sharff, A., Bricogne, G., Ortiz-Lombardia, M., Lescar, J., & Canard, B. (2011). Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex. PLoS Pathogens, 7(5), e1002059. https://doi.org/10.1371/journal.ppat.1002059
  • Decroly, E., Imbert, I., Coutard, B., Bouvet, Ml., Selisko, Barbara., Alvarez, Karine., Gorbalenya, Alexander E., Snijder, Eric J., & Canard, Bruno. (2008). Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2’O)-methyltransferase activity. Journal of Virology, 82(16), 8071–8084. https://doi.org/10.1128/JVI.00407-08
  • Elfiky, A. A. (2020a). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences, 248, 117477. https://doi.org/10.1016/j.lfs.2020.117477
  • Elfiky, A. A. (2020b). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253, 117592. https://doi.org/10.1016/j.lfs.2020.117592
  • Elmezayen, A. D., Al-Obaidi, A., Sahin, A. T., & Yelekci, K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics., 1–13. https://doi.org/10.1080/07391102.2020.1758791
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–16. https://doi.org/10.1080/07391102.2020.1756411 32295479
  • Decroly, E., Debarnot, C., Ferron, F., Bouvet, M., Coutard, B., Imbert, I., Gluais, L., Papageorgiou, N., Sharff, A., Bricogne, G., Ortiz-Lombardia, M., Lescar, J., & Canard, Bruno. (2011). Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex. PLoS Pathogens, 7(5), e1002059. https://doi.org/10.131/journal.ppat.1002059
  • Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology.), 1282, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
  • Ferner, R. E., & Aronson, J. K. (2020). Chloroquine and hydroxychloroquine in covid-19. BMJ (Clinical Research ed.).), 369, m1432. https://doi.org/10.1136/bmj.m1432
  • Froimowitz, M. (1993). HyperChem: a software package for computational chemistry and molecular modeling. BioTechniques, Biotechniques, 14(6), 1010–1013. 8333944
  • Goodsell, D. S. (2009). Computational docking of biomolecular complexes with AutoDock. Cold Spring Harbor Protocols, 2009(5)pdb prot5200. https://doi.org/10.1101/pdb.prot5200
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011a). Fast docking using the CHARMM force field with EADock DSS. J Comput Chem, 32(10), 2149–2159. https://doi.org/10.1002/jcc.21797
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011b). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(Web Server issue), W270–277. https://doi.org/10.1093/nar/gkr366
  • Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–11. https://doi.org/10.1080/07391102.2020.1751300 32238078
  • Harshitha, K., & Nair, R. A. (2020). Evaluation of DNA Methylation Changes by CRED-RA Analysis Following Prednisone Treatment of Endophyte, Fusarium oxysporum. Indian Journal of Microbiology, Indian J Microbiol, 60(2), 254–258. https://doi.org/10.1007/s12088-020-00857-8 32255859
  • Hassan, M., Raza, H., Abbasi, M. A., Moustafa, A. A., & Seo, S. Y. (2019). The exploration of novel Alzheimer's therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 109, 2513–2526. https://doi.org/10.1016/j.biopha.2018.11.115
  • Hendaus, M. A. (2020). Remdesivir in the treatment of coronavirus disease 2019 (COVID-19): a simplified summary. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–6. https://doi.org/10.1080/07391102.2020.1767691 32396771
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Huang, C. C., Meng, E. C., Morris, J. H., Pettersen, E. F., & Ferrin, T. E. (2014). Enhancing UCSF Chimera through web services. Nucleic Acids Research, Nucleic Acids Res., 42(Web Server issue), W478–W484. https://doi.org/10.1093/nar/gku377 24861624
  • Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2020). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–16. https://doi.org/10.1080/07391102.2020.1760137 32329408
  • Ke, Min., Chen, Yu., Wu, Andong., Sun, Ying., Su, Ceyang., Wu, Hao., Jin, Xu., Tao, Jiali., Wang, Yi., Ma, Xiao., Pan, Ji-An., & Guo, Deyin. (2012). Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex . Virus Research, 167(2), 322–328. https://doi.org/10.1016/j.virusres.2012.05.017
  • Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020). Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2'-O-ribose methyltransferase. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–14. https://doi.org/10.1080/07391102.2020.1753577 32266873
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–10. https://doi.org/10.1080/07391102.2020.1751298 32238094
  • Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  • Li, J., Zhang, C., Wu, Z., Wang, G., & Zhao, H. (2020). The Mechanism and Clinical Outcome of patients with Corona Virus Disease 2019 Whose Nucleic Acid Test has changed from negative to positive, and the therapeutic efficacy of Favipiravir: A structured summary of a study protocol for a randomised controlled trial. Trials, Trials, 21(1), 488https://doi.org/10.1186/s13063-020-04430-y 32503657
  • Li, X., Geng, M., Peng, Y., Meng, L., & Lu, S. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, J. Pharm. Anal., 10(2), 102–108. https://doi.org/10.1016/j.jpha.2020.03.001 32282863
  • Liu, S., Zheng, Q., & Wang, Z. (2020). Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics (Oxford, England), 36(11), 3295–3298. https://doi.org/10.1093/bioinformatics/btaa224
  • Luo, P., Liu, Y., Qiu, L., Liu, X., Liu, D., & Li, J. (2020). Tocilizumab treatment in COVID-19: A single center experience. Journal of Medical Virology, 92(7), 814-818 https://doi.org/10.1002/jmv.25801
  • Ma, D. L., Chan, D. S., & Leung, C. H. (2013). Drug repositioning by structure-based virtual screening. Chemical Society Reviews, 42(5), 2130–2141. https://doi.org/10.1039/c2cs35357a
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. https://doi.org/10.1021/ct200196m
  • Memish, Z. A., Perlman, S., Van Kerkhove, M. D., & Zumla, A. (2020). Middle East respiratory syndrome. The Lancet, 395(10229), 1063–1077. https://doi.org/10.1016/S0140-6736(19)33221-0
  • Menachery, V. D., Debbink, K., & Baric, R. S. (2014). Coronavirus non-structural protein 16: Evasion, attenuation, and possible treatments. Virus Research, 194, 191–199. https://doi.org/10.1016/j.virusres.2014.09.009
  • Menachery, V. D., Gralinski, L. E., Mitchell, H. D., Dinnon, K. H., Leist, S. R., Yount, B. L., Graham, R. L., McAnarney, E. T., Stratton, K. G., Cockrell, A. S., Debbink, K., Sims, A. C., Waters, K. M., & Baric, R. S. (2017). Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis. mSphere, 2(6), e00346-17. https://doi.org/10.1128/mSphere.00346-17
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Michot, J. M., Albiges, L., Chaput, N., Saada, V., Pommeret, F., Griscelli, F., … Stoclin, A. (2020). Tocilizumab, an anti-IL6 receptor antibody, to treat Covid-19-related respiratory failure: A case report. Annals of Oncology, 31(7), 961-964. https://doi.org/10.1016/j.annonc.2020.03.300
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. Journal of Biomolecular Structure and Dynamics., 1–7. https://doi.org/10.1080/07391102.2020.1752802
  • Pant, S., Singh, M., Ravichandiran, V., Murty, U. S. N., & Srivastava, H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–10. https://doi.org/10.1080/07391102.2020.1757510 32306822
  • Pence, H. E., & Williams, A. (2010). ChemSpider: An Online Chemical Information Resource. Journal of Chemical Education, 87(11), 1123–1124. https://doi.org/10.1021/ed100697w
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Prasad, V., & Mailankody, S. (2017). Research and development spending to bring a single cancer drug to market and revenues after approval. JAMA Internal Medicine, 177(11), 1569–1575. https://doi.org/10.1001/jamainternmed.2017.3601
  • Rosa, S. G. V., & Santos, W. C. (2020). Clinical trials on drug repositioning for COVID-19 treatment. Revista Panamericana De Salud Publica = Pan American Journal of Public Health, Rev Panam Salud Publica, 44, e40https://doi.org/10.26633/RPSP.2020.40 32256547
  • Rosa, S. G. V., & Santos, W. C. (2020). Clinical trials on drug repositioning for COVID-19 treatment. Revista Panamericana de Salud Publica [Pan American Journal of Public Health], 44, e40. https://doi.org/10.26633/RPSP.2020.40
  • Sahraei, Z., Shabani, M., Shokouhi, S., & Saffaei, A. (2020). Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine. International Journal of Antimicrobial Agents, 55(4), 105945. https://doi.org/10.1016/j.ijantimicag.2020.105945
  • Sang, P., Tian, S.-H., Meng, Z.-H., & Yang, L.-Q. (2020). Anti-HIV drug repurposing against SARS-CoV-2. RSC Advances, 10(27), 15775–15783. https://doi.org/10.1039/D0RA01899F
  • Sarma, P., Shekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., Singh, S., Kumar, H., Prakash, A., Dhibar, D. P., & Medhi, B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–9. https://doi.org/10.1080/07391102.2020.1753580 32266867
  • Schmoldt, A., Benthe, H. F., & Haberland, G. (1975). Digitoxin metabolism by rat liver microsomes. Biochemical Pharmacology, Biochem. Pharmacol., 24(17), 1639–1641. 10
  • Scuccimarri, R., Sutton, E., & Fitzcharles, M. A. (2020). Hydroxychloroquine: A potential ethical dilemma for rheumatologists during the COVID-19 pandemic. The Journal of Rheumatology, 47(6), 783–786. https://doi.org/10.3899/jrheum.200369
  • Shah, B., Modi, P., & Sagar, S. R. (2020). In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sciences, 252, 117652. https://doi.org/10.1016/j.lfs.2020.117652
  • Sinha, S. K., Shakya, A., Prasad, S. K., Singh, S., Gurav, N. S., Prasad, R. S., & Gurav, S. S. (2020). An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. Journal of Biomolecular Structure & Dynamics, J. Biomol. Struct. Dyn., 1–12. https://doi.org/10.1080/07391102.2020.1762741 32345124
  • Sodhi, M., & Etminan, M. (2020). Therapeutic potential for tetracyclines in the treatment of COVID-19. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40(5), 487–488. https://doi.org/10.1002/phar.2395
  • Sohraby, F., Bagheri, M., & Aryapour, H. (2019). Performing an in silico repurposing of existing drugs by combining virtual screening and molecular dynamics simulation. Methods Mol. Biol.), 1903, 23–43. https://doi.org/10.1007/978-1-4939-8955-3_2
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • van Aalten, D., Amadei, A., Bywater, R., Findlay, J., Berendsen, H., Sander, C., & Stouten, P. (1996). A comparison of structural and dynamic properties of different simulation methods applied to SH3. Biophysical Journal, 70(2), 684–692. https://doi.org/10.1016/S0006-3495(96)79608-X
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Protein Eng., 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127 7630882
  • Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. (2009). PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, Nucleic Acids Res., 37(Web Server issue), W623–W633. https://doi.org/10.1093/nar/gkp456 19498078
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D.,Pon, A.,  Knox, C,& Wilson, M.(2017). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074-D1082. https://doi.org/10.1093/nar/gkx1037
  • Zhang, X., Song, K., Tong, F., Fei, M., Guo, H., Lu, Z., Wang, J., & Zheng, C. (2020). First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Advances, 4(7), 1307–1310. https://doi.org/10.1182/bloodadvances.2020001907
  • Zoete, V., Daina, A., Bovigny, C., & Michielin, O. (2016). SwissSimilarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling, J. Chem. Inf. Model., 56(8), 1399–1404. https://doi.org/10.1021/acs.jcim.6b00174 27391578
  • Zoete, V., Daina, A., Bovigny, C., & Michielin, O. (2016). Swiss similarity: A web tool for low to ultra high throughput ligand-based virtual screening. Journal of Chemical Information and Modeling, 56(8), 1399–1404. https://doi.org/10.1021/acs.jcim.6b00174
  • Züst, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B. W., Ziebuhr, J., Szretter, K. J., Baker, S. C., Barchet, W., Diamond, M. S., Siddell, S. G., Ludewig, B., & Thiel, V. (2011). Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunology, 12(2), 137–143. https://doi.org/10.1038/ni.1979

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.