3,984
Views
41
CrossRef citations to date
0
Altmetric
Research Articles

Drug repurposing against SARS-CoV-2 using E-pharmacophore based virtual screening, molecular docking and molecular dynamics with main protease as the target

, , , &
Pages 4647-4658 | Received 26 May 2020, Accepted 02 Jun 2020, Published online: 22 Jun 2020

References

  • Aanouz, I., Belhassan, A., El-Khatabi, K., Lakhlifi, T., El-Ldrissi, M., & Bouachrine, M. (2020). Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1758790
  • Abb Vie Inc. (2016). Withdrawal of approval of indications related to the coadministration with statins in applications for niacin extended release tablets and fenofibric acid delayed-release capsules. Federal Register, 81(74), 22612–22613.
  • Al-Khafaji, Khattab, Dunya, A.-D., & Tugba, T. T. (2020). Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1764392
  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
  • Arya, A., & Dwivedi, V. D. (2020). Synergistic effect of vitamin D and Remdesivir can fight COVID-19. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1773929
  • Ash, R. J., & Diekema, K. A. (1987). Inhibition of herpes simplex virus replication by anthracycline compounds. Antiviral Research, 8(2), 71–83. https://doi.org/10.1016/0166-3542(87)90078-7 https://doi.org/10.1016/0166-3542(87)90078-7
  • Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: Identifying and developing new uses for existing drugs. Nature Reviews. Drug Discovery, 3(8), 673–683. https://doi.org/10.1038/nrd1468
  • Baden, L. R., & Rubin, E. J. (2020). Covid-19 - The search for effective therapy. The New England Journal of Medicine, 382(19), 1851–1852. https://doi.org/10.1056/NEJMe2005477
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1758788
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I, Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., and Shaw, D. E. (2006). Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), November 11–17.
  • Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. The New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
  • Choudhury, C. (2020). Fragment tailoring strategy to design novel chemical entities as potential binders of novel corona virus main protease. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1771424
  • Corman, V. M., Muth, D., Niemeyer, D., & Drosten, C. (2018). Hosts and sources of endemic human coronaviruses. Advances in Virus Research, 100, 163–188. https://doi.org/10.1016/bs.aivir.2018.01.001
  • Das, S., Sharat, S., Sona, L., & Atanu, S. R. (2020). An Investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1763201
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10-11), 647–671. https://doi.org/10.1007/s10822-006-9087-6
  • Edelstein, C. L., Venkatachalam, M. A., & Dong, Z. (2020). Autophagy inhibition by chloroquine and hydroxychloroquine could adversely affect acute kidney injury and other organ injury in critically ill patients with COVID-19. Kidney International, . https://doi.org/10.1016/j.kint.2020.05.001
  • Elfiky, A. A. (2020). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1761882
  • Elfiky, A. A., & Azzam, E. B. (2020). Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1758789
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1758791
  • Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1760136
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Glide Version 7.8. (2018). Glide Version 7.8, Schrödinger, LLC, New York, NY.
  • Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1751300
  • Gyebi, G. A., Olalekan, B. O., Adegbenro, P. A., Oludare, M. O., & Saheed, O. A. (2020). Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1764868
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hasan, A., Paray, B. A., Hussain, A., Qadir, F. A., Attar, F., Aziz, F. M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., Shahpasand, K., Saboury, A. A., & Falahati, M. (2020). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1754293
  • Hendaus, M. A. (2020). Remdesivir in the treatment of coronavirus disease 2019 (COVID-19): A simplified summary. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1767691
  • Himmelmann, A., Bergbrant, A., Svensson, A., Hansson, L., & Aurell, M. (1996). Remikiren (Ro 42-5892)–an orally active renin inhibitor in essential hypertension. Effects on blood pressure and the renin-angiotensin-aldosterone system. American Journal of Hypertension, 9(6), 517–522. https://doi.org/10.1016/0895-7061(95)00340-1 https://doi.org/10.1016/0895-7061(95)00340-1
  • Huang, C., Wei, P., Fan, K., Liu, Y., & Lai, L. (2004). 3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism. Biochemistry, 43(15), 4568–4574. https://doi.org/10.1021/bi036022q
  • Jeyaseelan, R., Kurabayashi, M., & Kedes, L. (1996). Doxorubicin inhibits tat-dependent transactivation of HIV type 1 LTR. AIDS Research and Human Retroviruses, 12(7), 569–576. https://doi.org/10.1089/aid.1996.12.569
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., & Peng, C. (2020). Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature, https://doi.org/10.1038/s41586-020-2223-y
  • Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2020). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1760137
  • Kaptein, S. J. F., De Burghgraeve, T., Froeyen, M., Pastorino, B., Alen, M. M. F., Mondotte, J. A., Herdewijn, P., Jacobs, M., de Lamballerie, X., Schols, D., Gamarnik, A. V., Sztaricskai, F., & Neyts, J. (2010). A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro. Antimicrobial Agents and Chemotherapy, 54(12), 5269–5280. https://doi.org/10.1128/AAC.00686-10
  • Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1753577
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1751298
  • Kumar, A., Gourav, C., Sanjeev, K. S., Mansi, S., Pankaj, T., A. B., & Madhu, R. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1772112
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate Prediction of the Relative Potencies of Members of a Series of Kinase Inhibitors Using Molecular Docking and MM-GBSA Scoring. Journal of Medicinal Chemistry, 49(16), 4805–4808. https://doi.org/10.1021/jm060522a
  • Mitjà, O., & Clotet, B. (2020). Use of antiviral drugs to reduce COVID-19 transmission. Lancet Glob Health, https://doi.org/10.1016/S2214-109X(20)30114-5
  • Mousavizadeh, L., & Ghasemi, S. (2020). Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiolimmunol, https://doi.org/10.1016/j.jmii.2020.03.022
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1752802
  • Muthusamy, K., Singh, K. D., Chinnasamy, S., Nagamani, S., Krishnasamy, G., Thiyagarajan, C., Premkumar, P., & Anusuyadevi, M. (2013). High throughput virtual screening and e-pharmacophore filtering in the discovery of new BACE-1 inhibitors. Interdisciplinary Sciences, Computational Life Sciences, 5(2), 119–126. https://doi.org/10.1007/s12539-013-0157-x
  • Oliveira, O., V de, Gerd, B. R., Andrew, S. P., & Luciano, T. C. (2020). Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1772885
  • Pant, S., Singh, M., Ravichandiran, V., Murty, U. S. N., & Srivastava, H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1757510
  • Papas, T. S., & Schafer, M. P. (1977). The inhibition of Rauscher leukemia virus and avian myeloblastosis virus DNA polymerases by anthracycline compounds. Annals of the New York Academy of Sciences, 284, 566–575. https://doi.org/10.1111/j.1749-6632.1977.tb21988.x
  • Paules, C. I., Marston, H. D., & Fauci, A. S. (2020). Coronavirus Infections-More than Just the Common Cold. JAMA, 323(8), 707. https://doi.org/10.1001/jama.2020.0757
  • Peng, J., Zhang, D., Ma, Y., Wang, G., Guo, Z., & Lu, J. (2014). Protective effect of fluvastatin on influenza virus infection. Molecular Medicine Reports, 9(6), 2221–2226. https://doi.org/10.3892/mmr.2014.2076
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Proekt, A., & Hemmings, H. C. Jr (2019). Mechanisms of Drug Action. In: Hemmings HC Jr, Egan TD (eds) Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application (2nd ed., pp. 2–19). Elsevier Inc.
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Salma, P., Shekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., Singh, S., Kumar, H., Prakash, A., Dhibar, D. P., & Medhi, B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1753580
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Schrödinger Release 2018-1. (2018). Schrödinger Release 2018-1: Maestro, Schrödinger, LLC.
  • Shrivastava-Ranjan, P., Flint, M., Bergeron, É., McElroy, A. K., Chatterjee, P., Albariño, C. G., Nichol, S. T., & Spiropoulou, C. F. (2018). Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing. mBio, 9(3), e00660–18. https://doi.org/10.1128/mBio.00660-18
  • Sinha, S. K., A., Shakya, Satyendra, K., Prasad, S., Singh, N. S., Gurav, R. S., Prasad, S. S. & Gurav, (2020). An In-Silico Evaluation of Different Saikosaponins for Their Potency against SARS-CoV-2 Using NSP15 and Fusion Spike Glycoprotein as Targets. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1762741
  • Siramshetty, V. B., Eckert, O. A., Gohlke, B. O., Goede, A., Chen, Q., Devarakonda, P., Preissner, S., & Preissner, R. (2018). SuperDRUG2: A one stop resource for approved/marketed drugs. Nucleic Acids Research, 46(D1), D1137–D1143. https://doi.org/10.1093/nar/gkx1088
  • Su, S., Wong, G., Shi, W., Weifeng, S., Jun, L., Alexander, C. K. L., Jiyong, Z., Wenjun, L., Y., & Bi, G. F. G. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24(6), 490–502. https://doi.org/10.1016/j.tim.2016.03.003
  • Umesh, D. K., Chandrabose, S., Sanjeev, K. S., & Vikash, K. D. (2020). Identification of New Anti-NCoV Drug Chemical Compounds from Indian Spices Exploiting SARS-CoV-2 Main Protease as Target. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1763202
  • Yan (2020). Three Drugs Fairly Effective on Novel Coronavirus at Cellular Level. Xinhuanet, 22 http://www.xinhuanet.com/english/2020‑01/30/c_138742163.htm
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, https://doi.org/10.1126/science.abb3405
  • Zheng, J. (2020). SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. International Journal of Biological Sciences, 16(10), 1678–1685. https://doi.org/10.7150/ijbs.45053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.