245
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical studies on 1,4-dihydropyridine derivatives as P-glycoprotein allosteric inhibitors: insights on symmetry and stereochemistry

, ORCID Icon & ORCID Icon
Pages 4752-4763 | Received 09 Mar 2020, Accepted 04 Jun 2020, Published online: 23 Jun 2020

References

  • Alam, A., Kowal, J., Broude, E., Roninson, I., & Locher, K. P. (2019). Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science (New York, N.Y.).), 363(6428), 753–756. https://doi.org/10.1126/science.aav7102
  • Aller, S. G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., Harrell, P. M., Trinh, Y. T., Zhang, Q., Urbatsch, I. L., & Chang, G. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science (New York, N.Y.).), 323(5922), 1718–1722. https://doi.org/10.1126/science.1168750
  • Baptista, R., Ferreira, R. J., dos Santos, D. J., Fernandes, M. X., & Ferreira, M.-J U. (2016). Optimizing the macrocyclic diterpenic core toward the reversal of multidrug resistance in cancer. Future Medicinal Chemistry, 8(6), 629–645. https://doi.org/10.4155/fmc.16.11
  • Baumert, C., Günthel, M., Krawczyk, S., Hemmer, M., Wersig, T., Langner, A., Molnár, J., Lage, H., & Hilgeroth, A. (2013). Development of small-molecule P-gp inhibitors of the N-benzyl 1,4-dihydropyridine type: Novel aspects in SAR and bioanalytical evaluation of multidrug resistance (MDR) reversal properties. Bioorganic & Medicinal Chemistry, 21(1), 166–177. https://doi.org/10.1016/j.bmc.2012.10.041
  • Blau, C., & Grubmuller, H. (2013). g_contacts: Fast contact search in bio-molecular ensemble data. Computer Physics Communications., 184(12), 2856–2859. https://doi.org/10.1016/j.cpc.2013.07.018
  • Bonito, C., Ferreira, R. J., Ferreira, M.-J U., Gillet, J.-P., Cordeiro, M. N. D. S., & dos Santos, D. J. V. A. (2020). Theoretical insights on helix repacking as the origin of P-glycoprotein promiscuity. Scientific Reports, 10, 1-13. https://doi.org/10.1038/s41598-020-66587-5
  • Borchers, C., Boer, R., Klemm, K., Figala, V., Denzinger, T., Ulrich, W.-R., Haas, S., Ise, W., Gekeler, V., & Przybylski, M. (2002). Characterization of the dexniguldipine binding site in the multidrug resistance-related transport protein P-glycoprotein by photoaffinity labeling and mass spectrometry. Molecular Pharmacology, 61(6), 1366–1376. https://doi.org/10.1124/mol.61.6.1366
  • Bruggemann, E. P., Germann, U. A., Gottesman, M. M., & Pastan, I. (1989). Two different regions of P-glycoprotein [corrected] are photoaffinity-labeled by azidopine. Journal of Biological Chemistry, 264(26), 15483–15488.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126, 14101–14107. https://doi.org/10.1063/1.2408420
  • Chufan, E. E., Kapoor, K., & Ambudkar, S. V. (2016). Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein. Biochemical Pharmacology, 101, 40–53. https://doi.org/10.1016/j.bcp.2015.12.007
  • Conseil, G., Baubichon-Cortay, H., Dayan, G., Jault, J.-M., Barron, D., & Di Pietro, A. (1998). Flavonoids: A class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 95(17), 9831–9836. https://doi.org/10.1073/pnas.95.17.9831
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Desai, P. V., Raub, T. J., & Blanco, M.-J. (2012). How hydrogen bonds impact P-glycoprotein transport and permeability. Bioorganic & Medicinal Chemistry Letters, 22(21), 6540–6548. https://doi.org/10.1016/j.bmcl.2012.08.059
  • Eckford, P. D. W., & Sharom, F. J. (2009). ABC efflux pump-based resistance to chemotherapy drugs. Chemical Reviews, 109(7), 2989–3011. https://doi.org/10.1021/cr9000226
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Ferreira, R. J., Baptista, R., Moreno, A., Madeira, P. G., Khonkarn, R., Baubichon-Cortay, H., dos Santos, D. J., Falson, P., & Ferreira, M.-J U. (2018). Optimizing the flavanone core toward new selective nitrogen-containing modulators of ABC transporters. Future Medicinal Chemistry, 10(7), 725–741. https://doi.org/10.4155/fmc-2017-0228
  • Ferreira, R. J., Bonito, C. A., Ferreira, M. J. U., & dos Santos, D. J. V. A. (2017). About P-glycoprotein: A new drugable domain is emerging from structural data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7(5), e1316. https://doi.org/10.1002/wcms.1316
  • Ferreira, R. J., dos Santos, D. J. V. A., & Ferreira, M.-J U. (2015). P-glycoprotein and membrane roles in multidrug resistance. Future Medicinal Chemistry, 7(7), 929–946. https://doi.org/10.4155/fmc.15.36
  • Ferreira, R. J., Ferreira, M.-J U., & dos Santos, D. J. V. A. (2013). Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. Journal of Chemical Information and Modeling, 53(7), 1747–1760. https://doi.org/10.1021/ci400195v
  • Ferreira, R. J., Ferreira, M.-J U., & dos Santos, D. J. V. A. (2015a). Do adsorbed drugs onto P-glycoprotein influence its efflux capability? Physical Chemistry Chemical Physics: PCCP, 17(34), 22023–22034. https://doi.org/10.1039/c5cp03216d
  • Ferreira, R. J., Ferreira, M.-J U., & dos Santos, D. J. V. A. (2015b). Reversing cancer multidrug resistance: Insights into the efflux by ABC transports from in silico studies. Wiley Interdisciplinary Reviews: Computational Molecular Science, 5(1), 27–55. https://doi.org/10.1002/wcms.1196
  • Ferreira, R. J., Ferreira, M.-J U., & dos Santos, D. J. V. A. (2015c). Do drugs have access to the P-glycoprotein drug-binding pocket through gates? Journal of Chemical Theory and Computation, 11(10), 4525–4529. https://doi.org/10.1021/acs.jctc.5b00652
  • Ferreira, R. J., Ferreira, M.-J U., Santos, D. J. V. A. & dos, (2012). Insights on P-glycoprotein's efflux mechanism obtained by molecular dynamics simulations . Journal of Chemical Theory and Computation, 8(6), 1853–1864. https://doi.org/10.1021/ct300083m
  • Ferry, D. R., Russell, M. A., & Cullen, M. H. (1992). P-glycoprotein possesses A 1,4-dihydropyridine-selective drug acceptor site which is alloserically coupled to a vinca-alkaloid-selective binding site. Biochemical and Biophysical Research Communications, 188(1), 440–445. https://doi.org/10.1016/0006-291X(92)92404-L
  • Furuta, T., & Sakurai, M. (2018). Functional mechanisms of ABC Transporters As Revealed By Molecular Simulations. In The role of water in ATP hydrolysis energy transduction by protein machinery (pp. 179–201). Springer. https://doi.org/10.1007/978-981-10-8459-1_12
  • Futamata, R., Ogasawara, F., Ichikawa, T., Kodan, A., Kimura, Y., Kioka, N., & Ueda, K. (2020). In vivo FRET analyses reveal a role of ATP hydrolysis-associated conformational changes in human P-glycoprotein. The Journal of Biological Chemistry, 295(15), 5002–5011. https://doi.org/10.1074/jbc.RA119.012042
  • Gyimesi, G., Ramachandran, S., Kota, P., Dokholyan, N. V., Sarkadi, B., & Hegedus, T. (2011). ATP hydrolysis at one of the two sites in ABC transporters initiates transport related conformational transitions. Biochimica et Biophysica Acta, 1808(12), 2954–2964. https://doi.org/10.1016/j.bbamem.2011.07.038
  • Hess, B. (2008). P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hilgeroth, A., Baumert, C., Coburger, C., Seifert, M., Krawczyk, S., Hempel, C., Neubauer, F., Krug, M., Molnár, J., & Lage, H. (2013). Novel Structurally Varied N-Alkyl 1,4-Dihydropyridines as ABCB1 Inhibitors: Structure-Activity Relationships, Biological Activity and First Bioanalytical Evaluation. Medicinal Chemistry (Shariqah (United Arab Emirates)), 9(4), 487–493. https://doi.org/10.2174/1573406411309040002
  • Hofmann, J., Gekeler, V., Ise, W., Noller, A., Mitterdorfer, J., Hofer, S., Utz, I., Gotwald, M., Boer, R., & Glossmann, H. (1995). Mechanism of action of dexniguldipine-HCl (B8509-035), a new potent modulator of multidrug resistance. Biochemical Pharmacology, 49(5), 603–609. https://doi.org/10.1016/0006-2952(94)00479-6
  • Homeyer, N., & Gohlke, H. (2012). Free Energy Calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area Method. Molecular Informatics, 31(2), 114–122. https://doi.org/10.1002/minf.201100135
  • Hoover, W. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/physreva.31.1695
  • Isca, V. M. S., Ferreira, R. J., Garcia, C., Monteiro, C. M., Dinic, J., Holmstedt, S., Andre, V., Pesic, M., dos Santos, D. J. V. A., Candeias, N. R., Afonso, C. A. M., & Rijo, P. (2020). Molecular Docking Studies of Royleanone Diterpenoids from Plectranthus spp. as P-Glycoprotein Inhibitors. ACS Medicinal Chemistry Letters., 11(5), 839-845. https://doi.org/10.1021/acsmedchemlett.9b00642
  • Isenberg, B., Thole, H., Tümmler, B., & Demmer, A. (2001). Identification and localization of three photobinding sites of iodoarylazidoprazosin in hamster P-glycoprotein. European Journal of Biochemistry, 268(9), 2629–2634. https://doi.org/10.1046/j.1432-1327.2001.02155.x
  • Kim, J. Y., Henrichs, S., Bailly, A., Vincenzetti, V., Sovero, V., Mancuso, S., Pollmann, S., Kim, D., Geisler, M., & Nam, H. G. (2010). Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. The Journal of Biological Chemistry, 285(30), 23309–23317. https://doi.org/10.1074/jbc.M110.105981
  • Kim, Y., & Chen, J. (2018). Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science (New York, N.Y.).), 359(6378), 915–919. https://doi.org/10.1126/science.aar7389
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kwan, T., & Gros, P. (1998). Mutational analysis of the P-glycoprotein first intracellular loop and flanking transmembrane domains. Biochemistry, 37(10), 3337–3350. https://doi.org/10.1021/bi972680x
  • Lemkul, J. A., Allen, W. J., & Bevan, D. R. (2010). Practical considerations for building GROMOS-compatible small-molecule topologies. Journal of Chemical Information and Modeling, 50(12), 2221–2235. https://doi.org/10.1021/ci100335w
  • Li, J., Jaimes, K. F., & Aller, S. G. (2014). Refined structures of mouse P-glycoprotein. Protein Science : a Publication of the Protein Society, 23(1), 34–46. https://doi.org/10.1002/pro.2387
  • (2015). Lill, M. A. (Ed.). In Silico Drug Discovery and Design. Future Science Ltd. https://doi.org/10.4155/EBO.13.272
  • Lomize, A. L., Hage, J. M., Schnitzer, K., Golobokov, K., LaFaive, M. B., Forsyth, A. C., & Pogozheva, I. D. (2019). PerMM: A Web Tool and Database for Analysis of Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Journal of Chemical Information and Modeling, 59(7), 3094–3099. https://doi.org/10.1021/acs.jcim.9b00225
  • Lomize, A. L., & Pogozheva, I. D. (2019). Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Journal of Chemical Information and Modeling, 59(7), 3198–3213. https://doi.org/10.1021/acs.jcim.9b00224
  • Loo, T. W., Bartlett, M. C., & Clarke, D. M. (2008). Arginines in the first transmembrane segment promote maturation of a P-glycoprotein processing mutant by hydrogen bond interactions with tyrosines in transmembrane segment 11. The Journal of Biological Chemistry, 283(36), 24860–24870. https://doi.org/10.1074/jbc.M803351200
  • Loo, T. W., Bartlett, M. C., & Clarke, D. M. (2013). Human P-glycoprotein contains a greasy ball-and-socket joint at the second transmission interface. The Journal of Biological Chemistry, 288(28), 20326–20333. https://doi.org/10.1074/jbc.M113.484550
  • Loo, T. W., & Clarke, D. M. (2001). Determining the dimensions of the drug-binding domain of human P-glycoprotein using thiol cross-linking compounds as molecular rulers. The Journal of Biological Chemistry, 276(40), 36877–36880. https://doi.org/10.1074/jbc.C100467200
  • Loo, T. W., & Clarke, D. M. (2014). Locking Intracellular Helices 2 and 3 Together Inactivates Human P-glycoprotein. The Journal of Biological Chemistry, 289(1), 229–236. https://doi.org/10.1074/jbc.M113.527804
  • Loo, T. W., & Clarke, D. M. (2015). The Transmission Interfaces Contribute Asymmetrically to the Assembly and Activity of Human P-glycoprotein. The Journal of Biological Chemistry, 290(27), 16954–16963. https://doi.org/10.1074/jbc.M115.652602
  • Luzar, A. (2000). Resolving the hydrogen bond dynamics conundrum. Journal of Chemical Physics., 113(23), 10663–10675. https://doi.org/10.1063/1.1320826
  • McCormick, J. W., Vogel, P. D., & Wise, J. G. (2015). Multiple Drug Transport Pathways through Human P-Glycoprotein. Biochemistry, 54(28), 4374–4390. https://doi.org/10.1021/acs.biochem.5b00018
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Mollazadeh, S., Moosavi, F., Hadizadeh, F., Seifi, M., Behravan, J., & Iman, M. (2018). Synthesis and DFT Study on Hantzsch Reaction to Produce Asymmetrical Compounds of 1,4-Dihydropyridine Derivatives for P-Glycoprotein Inhibition as Anticancer Agent. Recent Patents on anti-Cancer Drug Discovery, 13(2), 255–264. https://doi.org/10.2174/1574892813666180220112613
  • Mollazadeh, S., Sahebkar, A., Hadizadeh, F., Behravan, J., & Arabzadeh, S. (2018). Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sciences, 214, 118–123. https://doi.org/10.1016/j.lfs.2018.10.048
  • Mollazadeh, S., Sahebkar, A., Kalalinia, F., Behravan, J., & Hadizadeh, F. (2019). Synthesis, in silico and in vitro studies of new 1,4-dihydropiridine derivatives for antitumor and P-glycoprotein inhibitory activity. Bioorganic Chemistry, 91, 103156. https://doi.org/10.1016/j.bioorg.2019.103156
  • Mollazadeh, S., Shamsara, J., Iman, M., & Hadizadeh, F. (2017). Docking and QSAR Studies of 1,4-Dihydropyridine Derivatives as Anti- Cancer Agent. Recent Pat Anticancer Drug Discov , 12(2), 174–185. https://doi.org/10.2174/1574892812666170126162521
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nosé, S. (2002). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics., 100(1), 191–198. https://doi.org/10.1080/00268970110089108
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics., 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Ondieki, G., Nyagblordzro, M., Kikete, S., Liang, R., Wang, L., & He, X. (2017). Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases. Evidence-Based Complementary and Alternative Medicine : Ecam, 2017, 2582463. https://doi.org/10.1155/2017/2582463
  • Páll, S., & Hess, B. (2013). A flexible algorithm for calculating pair interactions on SIMD architectures. Computer Physics Communications., 184(12), 2641–2650. https://doi.org/10.1016/j.cpc.2013.06.003
  • Palmeira, A., Sousa, E., Vasconcelos, M. H., & Pinto, M. (2012). Three Decades of P-gp Inhibitors: Skimming Through Several Generations and Scaffolds. Curr. Med. Chem, 19(13), 1946–2025. https://doi.org/10.2174/092986712800167392
  • Pan, L., & Aller, S. G. (2015). Equilibrated Atomic Models of Outward-Facing P-glycoprotein and Effect of ATP Binding on Structural Dynamics. Scientific Reports, 5, 7880. https://doi.org/10.1038/srep07880
  • Pham, Y. T., Régina, A., Farinotti, R., Couraud, P., Wainer, I. W., Roux, F., & Gimenez, F. (2000). Interactions of racemic mefloquine and its enantiomers with P-glycoprotein in an immortalised rat brain capillary endothelial cell line, GPNT. Biochimica et Biophysica Acta., 1524(2-3), 212–219. https://doi.org/10.1016/S0304-4165(00)00160-4
  • Poger, D., & Mark, A. E. (2010). On the Validation of Molecular Dynamics Simulations of Saturated and cis-Monounsaturated Phosphatidylcholine Lipid Bilayers: A Comparison with Experiment . J Chem Theory Comput, 6(1), 325–336. https://doi.org/10.1021/ct900487a
  • Poger, D., Van Gunsteren, W. F., & Mark, A. E. (2010). A new force field for simulating phosphatidylcholine bilayers. Journal of Computational Chemistry, 31(6), 1117–1125. https://doi.org/10.1002/jcc.21396
  • Prajapati, R., & Sangamwar, A. T. (2014). Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics. Biochimica et Biophysica Acta, 1838(11), 2882–2898. https://doi.org/10.1016/j.bbamem.2014.07.018
  • Ranjbar, S., Firuzi, O., Edraki, N., Shahraki, O., Saso, L., Khoshneviszadeh, M., & Miri, R. (2017). Tetrahydroquinolinone derivatives as potent P-glycoprotein inhibitors: Design, synthesis, biological evaluation and molecular docking analysis. MedChemComm, 8(10), 1919–1933. https://doi.org/10.1039/c7md00178a
  • Reymann, A., Looft, G., Woermann, C., Dietel, M., & Erttmann, R. (1993). Reversal of multidrug resistance in Friend leukemia cells by dexniguldipine-HCl. Cancer Chemotherapy and Pharmacology, 32(1), 25–30. https://doi.org/10.1007/BF00685872
  • Riffkin, C. D., Chung, R., Wall, D. M., Zalcberg, J. R., Cowman, A. F., Foley, M., & Tilley, L. (1996). Modulation of the function of human MDR1 P-glycoprotein by the antimalarial drug mefloquine. Biochemical Pharmacology, 52(10), 1545–1552. https://doi.org/10.1016/S0006-2952(96)00556-4
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shahraki, O., Zargari, F., Edraki, N., Khoshneviszadeh, M., Firuzi, O., & Miri, R. (2018). Molecular dynamics simulation and molecular docking studies of 1,4-Dihydropyridines as P-glycoprotein's allosteric inhibitors . Journal of Biomolecular Structure & Dynamics, 36(1), 112–125. https://doi.org/10.1080/07391102.2016.1268976
  • Sharom, F. J. (2008). ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics, 9(1), 105–127. https://doi.org/10.2217/14622416.9.1.105
  • Shekari, F., Sadeghpour, H., Javidnia, K., Saso, L., Nazari, F., Firuzi, O., & Miri, R. (2014). Cytotoxic and multidrug resistance reversal activities of novel 1,4-dihydropyridines against human cancer cells. European Journal of Pharmacology, 746(5), 233-244. https://doi.org/10.1016/j.ejphar.2014.10.058
  • Siarheyeva, A., Liu, R., & Sharom, F. J. (2010). Characterization of an asymmetric occluded state of P-glycoprotein with two bound nucleotides: Implications for catalysis. The Journal of Biological Chemistry, 285(10), 7575–7586. https://doi.org/10.1074/jbc.M109.047290
  • Störmer, E., Perloff, M. D., von Moltke, L. L., & Greenblatt, D. J. (2001). Methadone inhibits rhodamine123 transport in Caco-2 cells. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 29(7), 954–956. http://www.ncbi.nlm.nih.gov/pubmed/11408360
  • Subramanian, N. (2015). Understanding multidrug resistance: Molecular dynamics studies of ligand recognition by P-glycoprotein [PhD Thesis]. School of Chemistry and Molecular Biosciences,The University of Queensland. https://doi.org/10.14264/uql.2015.1108
  • Subramanian, N., Condic-Jurkic, K., Mark, A. E., & O'Mara, M. L. (2015). Identification of Possible Binding Sites for Morphine and Nicardipine on the Multidrug Transporter P-Glycoprotein Using Umbrella Sampling Techniques. Journal of Chemical Information and Modeling, 55(6), 1202–1217. https://doi.org/10.1021/ci5007382
  • Szabon-Watola, M. I., Ulatowski, S. V., George, K. M., Hayes, C. D., Steiger, S. a., & Natale, N. R. (2014). Fluorescent probes of the isoxazole-dihydropyridine scaffold: MDR-1 binding and homology model. Bioorganic & Medicinal Chemistry Letters, 24(1), 117–121. https://doi.org/10.1016/j.bmcl.2013.11.068
  • Szöllősi, D., Chiba, P., Szakacs, G., & Stockner, T. (2020). Conversion of chemical to mechanical energy by the nucleotide binding domains of ABCB1. Scientific Reports, 10(1), 2589https://doi.org/10.1038/s41598-020-59403-7
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tsuruo, T., Iida, H., Tsukagoshi, S., & Sakurai, Y. (1981). Overcoming of Vincristine Resistance in P388 Leukemia in Vivo and in Vitro through Enhanced Cytotoxicity of Vincristine and Vinblastine by Verapamil. Cancer Research, 41(5), 1967–1972. http://www.ncbi.nlm.nih.gov/pubmed/7214365
  • van der Spoel, D., van Maaren, P. J., Larsson, P., & Tîmneanu, N. (2006). Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. The Journal of Physical Chemistry. B, 110(9), 4393–4398. https://doi.org/10.1021/jp0572535
  • van Wonderen, J. H., McMahon, R. M., O'Mara, M. L., McDevitt, C. A., Thomson, A. J., Kerr, I. D., MacMillan, F., & Callaghan, R. (2014). The central cavity of ABCB1 undergoes alternating access during ATP hydrolysis. The FEBS Journal, 281(9), 2190–2201. https://doi.org/10.1111/febs.12773
  • Voigt, B., Coburger, C., Monár, J., & Hilgeroth, A. (2007). Structure-activity relationships of novel N-acyloxy-1,4-dihydropyridines as P-glycoprotein inhibitors . Bioorganic & Medicinal Chemistry, 15(15), 5110–5113. https://doi.org/10.1016/j.bmc.2007.05.036
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Weidner, L. D., Fung, K. L., Kannan, P., Moen, J. K., Kumar, J. S., Mulder, J., Innis, R. B., Gottesman, M. M., & Hall, M. D. (2016). Tariquidar Is an Inhibitor and Not a Substrate of Human and Mouse P-glycoprotein. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 44(2), 275–282. https://doi.org/10.1124/dmd.115.067785
  • Wise, J. G. (2012). Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites. Biochemistry, 51(25), 5125–5141. https://doi.org/10.1021/bi300299z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.