114
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Unexpected synthesis of novel 2-pyrone derivatives: crystal structures, Hirshfeld surface analysis and computational studies

, , , , , & show all
Pages 4859-4877 | Received 28 Mar 2020, Accepted 07 Jun 2020, Published online: 23 Jun 2020

References

  • Altmann, K.-H., & Gertsch, J. (2007). Anticancer drugs from nature—Natural products as a unique source of new microtubule-stabilizing agents. Natural Product Reports, 24(2), 327–357. https://doi.org/10.1039/B515619J
  • Altomare, C., Pengue, R., Favilla, M., Evidente, A., & Visconti, A. (2004). Structure − activity relationships of derivatives of fusapyrone, an antifungal metabolite of Fusarium semitectum. Journal of Agricultural & Food Chemistry, 52(10), 2997–3001. https://doi.org/10.1021/jf035233z
  • Altomare, C., Perrone, G., Zonno, M. C., Evidente, A., Pengue, R., Fanti, F., & Polonelli, L. (2000). Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. Journal of Natural Products, 63(8), 1131–1135. https://doi.org/10.1021/np000023r
  • Becke, A. D. (1993). Density–functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Bickel, C. L. (1950). The addition of malonic esters to an acetylenic ketone. Journal of the American Chemical Society, 72(2), 1022–1023. https://doi.org/10.1021/ja01158a502
  • Chattapadhyay, T. K., & Dureja, P. (2006). Antifungal activity of 4-methyl-6-alkyl-2H-pyran-2-ones. Journal of Agricultural & Food Chemistry, 54(6), 2129–2133. https://doi.org/10.1021/jf052792s
  • Dean, F. M. (1963). Naturally occurring oxygen ring compounds (Chap. 4). Butterworths.
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView, version 6.1. Semichem Inc.
  • Dieter, R. K., & Fishpaugh, J. R. (1983). A versatile synthesis of alpha-pyrones. The Journal of Organic Chemistry, 48(23), 4439–4441. https://doi.org/10.1021/jo00171a071
  • El Abbassi, M., Djerrari, B., Essassi, E., & Fifani, J. (1989). L’acide dehydracetique, precurseur de synthese de benzodiazepines. Tetrahedron Letters, 30(50), 7069–7070. https://doi.org/10.1016/S0040-4039(01)93425-2
  • El Abbassi, M., Djerrari, B., Essassi, E. M., & Fifani, J. (1990). Dehydracetic acid. Precursor in the synthesis of benzodiazepines. ChemInform, 21(30). https://doi.org/10.1002/chin.199030207
  • El Abbassi, M., Essassi, E. M., & Fifani, J. (1987). New synthesis of 1, 5-benzodiazepines from alpha-pyrone. Tetrahedron Letters, 28(13), 1389–1392. https://doi.org/10.1016/S0040-4039(00)95934-3
  • El Bakri, Y., Anouar, E. H., Marmouzi, I., Sayah, K., Ramli, Y., El Abbes Faouzi, M., Essassi, E. M., & Mague, J. T. (2018). Potential antidiabetic activity and molecular docking studies of novel synthesized 3.6-dimethyl-5-oxo-pyrido[3,4-f][1,2,4]triazepino[2,3-a]benzimidazole and 10-amino-2-methyl-4-oxo pyrimido[1,2-a]benzimidazole derivatives. Journal of Molecular Modeling, 24(7), 179. https://doi.org/10.1007/s00894-018-3705-9
  • El Bakri, Y., Guo, L., Anouar, E. H., Harmaoui, A., Ali, A. B., Essassi, E. M., & Mague, J. T. (2019). Synthesis, crystal structure, DFT, molecular dynamics simulation and evaluation of the anticorrosion performance of a new pyrazolotriazole derivative. Journal of Molecular Structure, 1176, 290–297. https://doi.org/10.1016/j.molstruc.2018.08.107
  • El Bakri, Y., Lai, C.-H., Sebhaoui, J., Ali, A. B., Ramli, Y., Essassi, E. M., & Mague, J. T. (2018). Synthesis, crystal structure, Hirshfeld surface analysis, and DFT calculations of new 1-[(1-benzyl-1H-1, 2, 3-triazol-4-yl) methyl]-6-methoxy-1H-benzimidazol-2 (3H)-one. Chemical Data Collections, 17–18, 472–482. https://doi.org/10.1016/j.cdc.2018.11.008
  • Fairlamb, I. J. S., Marrison, L. R., Dickinson, J. M., Lu, F.-J., & Schmidt, J. P. (2004). 2-Pyrones possessing antimicrobial and cytotoxic activities. Bioorganic & Medicinal Chemistry, 12(15), 4285–4299. https://doi.org/10.1016/j.bmc.2004.01.051
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09, revision E.01. Gaussian, Inc.
  • Gfeller, D., Michielin, O., & Zoete, V. (2013). Shaping the interaction landscape of bioactive molecules. Bioinformatics (Oxford, England), 29(23), 3073–3079. https://doi.org/10.1093/bioinformatics/btt540
  • Harris, T. M., & Harris, C. M. (1966). Carboxylation of β-dicarbonyl compounds through dicarbanions. Cyclizations to 4-hydroxy-2-pyrones. The Journal of Organic Chemistry, 31(4), 1032–1035. https://doi.org/10.1021/jo01342a010
  • Hong, H. S., Rana, S., Barrigan, L., Shi, A., Zhang, Y., Zhou, F., Jin, L. W., & Hua, D. H. (2009). Inhibition of Alzheimer’s amyloid toxicity with a tricyclic pyrone molecule in vitro and in vivo. Journal of Neurochemistry, 108(4), 1097–1108. https://doi.org/10.1111/j.1471-4159.2008.05866.x
  • Karthikeyan, S., Bharanidharan, G., Ragavan, S., Kandasamy, S., Chinnathambi, S., Udayakumar, K., Mangaiyarkarasi, R., Suganya, R., Aruna, P., & Ganesan, S. (2019a). Exploring the binding interaction mechanism of taxol in β-tubulin and bovine serum albumin: A biophysical approach. Molecular Pharmaceutics, 16(2), 669–681. https://doi.org/10.1021/acs.molpharmaceut.8b00948
  • Karthikeyan, S., Bharanidharan, G., Ragavan, S., Kandasamy, S., Chinnathambi, S., Udayakumar, K., Mangaiyarkarasi, R., Sundaramoorthy, A., Aruna, P., & Ganesan, S. (2019b). Comparative binding analysis of N-acetylneuraminic acid in bovine serum albumin and human α-1 acid glycoprotein. Journal of Chemical Information & Modeling, 59(1), 326–338. https://doi.org/10.1021/acs.jcim.8b00558
  • Larock, R. C., Doty, M. J., & Han, X. (1999). Synthesis of isocoumarins and α-pyrones via palladium-catalyzed annulation of internal alkynes. The Journal of Organic Chemistry, 64(24), 8770–8779. https://doi.org/10.1021/jo9821628
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Lohaus, G., & Dittmar, W. (1981). The chemistry of antimicrobially active 1-hydroxy-2-pyridones (author’s transl). Arzneimittel-Forschung, 31(8A), 1311–1316.
  • Maezawa, I., Hong, H.-S., Wu, H.-C., Battina, S. K., Rana, S., Iwamoto, T., Radke, G. A., Pettersson, E., Martin, G. M., Hua, D. H., & Jin, L.-W. (2006). A novel tricyclic pyrone compound ameliorates cell death associated with intracellular amyloid-β oligomeric complexes. Journal of Neurochemistry, 98(1), 57–67. https://doi.org/10.1111/j.1471-4159.2006.03862.x
  • Marrison, L. R., Dickinson, J. M., & Fairlamb, I. J. (2002). Bioactive 4-substituted-6-methyl-2-pyrones with promising cytotoxicity against A2780 and K562 cell lines. Bioorganic & Medicinal Chemistry Letters, 12(24), 3509–3513. https://doi.org/10.1016/S0960-894X(02)00824-7
  • McKinnon, J. J., Spackman, M. A., & Mitchell, A. S. (2004). Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallographica Section B Structural Science, 60(6), 627–668. https://doi.org/10.1107/S0108768104020300
  • Migliorese, K. G., & Miller, S. I. (1974). Skipped diynes. IV. Diacetylenic ketone reactions. The Journal of Organic Chemistry, 39(6), 843–845. https://doi.org/10.1021/jo00920a024
  • Newell, S. W., Perchellet, E. M., Ladesich, J. B., Freeman, J. A., Chen, Y., Liu, L., Hua, D., Kraft, S. L., Basaraba, R. J., & Perchellet, J.-P. (1998). Tricyclic pyrone analogs: A new class of microtubule-disrupting anticancer drugs effective against murine leukemia cells in vitro. International Journal of Oncology, 12(2), 433–475. https://doi.org/10.3892/ijo.12.2.433
  • Perchellet, E. M., Perchellet, J.-P H., Ganta, C. K., Troyer, D. L., Shi, A., & Hua, D. H. (2009). Synthesis, molecular targets, and antitumor activities of substituted tetrahydro-1-oxopyrano [4, 3-b][1] benzopyrans and nanogels for drug delivery. Anti-Cancer Agents in Medicinal Chemistry, 9(8), 864–876. https://doi.org/10.2174/187152009789124682
  • Perchellet, J., Newell, S., Ladesich, J., Perchellet, E., Chen, Y., Hua, D., Kraft, S., Basaraba, R., Omura, S., & Tomoda, H. (1997). Antitumor activity of novel tricyclic pyrone analogs in murine leukemia cells in vitro. Anticancer Research, 17(4A), 2427–2434.
  • Poppe, S. M., Slade, D. E., Chong, K. T., Hinshaw, R. R., Pagano, P. J., Markowitz, M., Ho, D. D., Mo, H., Gorman, R. R., Dueweke, T. J., Thaisrivongs, S., & Tarpley, W. G. (1997). Antiviral activity of the dihydropyrone PNU-140690, a new nonpeptidic human immunodeficiency virus protease inhibitor. Antimicrobial Agents & Chemotherapy, 41(5), 1058–1063. https://doi.org/10.1128/AAC.41.5.1058
  • Rana, S., Hong, H.-S., Barrigan, L., Jin, L.-W., & Hua, D. H. (2009). Syntheses of tricyclic pyrones and pyridinones and protection of Aβ-peptide induced MC65 neuronal cell death. Bioorganic & Medicinal Chemistry Letters, 19(3), 670–674. https://doi.org/10.1016/j.bmcl.2008.12.060
  • Ridley, C. P., & Khosla, C. (2007). Synthesis and biological activity of novel pyranopyrones derived from engineered aromatic polyketides. ACS Chemical Biology, 2(2), 104–108. https://doi.org/10.1021/cb600382j
  • Rodriguez, J., Riguera, R., & Debitus, C. (1992). New marine cytotoxic bispyrones. Absolute stereochemistry of onchitriols I and II. Tetrahedron Letters, 33(8), 1089–1092. https://doi.org/10.1016/S0040-4039(00)91868-9
  • Ronad, P. M., Noolvi, M. N., Sapkal, S., Dharbhamulla, S., & Maddi, V. S. (2010). Synthesis and antimicrobial activity of 7-(2-substituted phenylthiazolidinyl)-benzopyran-2-one derivatives. European Journal of Medical Chemistry, 45(1), 85–89. https://doi.org/10.1016/j.ejmech.2009.09.028
  • Rousset, S., Abarbri, M., Thibonnet, J., Duchêne, A., & Parrain, J.-L. (2000). Palladium-catalysed annulation reaction of allenyltins with β-iodo vinylic acids: Selective synthesis of α-pyrones. Chemical Communications, (20), 1987–1988. https://doi.org/10.1039/b005886f
  • Sang, X.-N., Chen, S.-F., Tang, M.-X., Wang, H.-F., An, X., Lu, X.-J., Zhao, D., Wang, Y.-B., Bai, J., Hua, H.-M., Chen, G., & Pei, Y.-H. (2017). α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. Bioorganic & Medicinal Chemistry Letters, 27(16), 3723–3725. https://doi.org/10.1016/j.bmcl.2017.06.079
  • Schrödinger, B. S. (2018). Novel Targets and Biomarkers in Solid Tumors. vol. 2: LLC.
  • Sebhaoui, J., El Bakri, Y., El Aoufir, Y., Anouar, E. H., Guenbour, A., Nasser, A. A., & Essassi, E. M. (2019). Synthesis, NMR characterization, DFT and anti-corrosion on carbon steel in 1M HCl of two novel 1, 5-benzodiazepines. Journal of Molecular Structure, 1182, 123–130. https://doi.org/10.1016/j.molstruc.2019.01.037
  • Seo, Y., Cho, K. W., Rho, J.-R., Shin, J., & Sim, C. J. (1998). Petrocortynes and petrosiacetylenes, novel polyacetylenes from a sponge of the genus Petrosia. Tetrahedron, 54(3–4), 447–462. https://doi.org/10.1016/S0040-4020(97)10290-3
  • Sharma, P., Powell, K. J., Burnley, J., Awaad, A. S., & Moses, J. E. (2011). Total synthesis of polypropionate-derived γ-pyrone natural products. Synthesis, 2011(18), 2865–2892. https://doi.org/10.1055/s-0030-1260168
  • Sheldrick, G. M. (2015a). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71(1), 3–8.
  • Sheldrick, G. M. (2015b). SHELXT: Integrated space-group and crystal-structure determination. Acta Crystallographica. Section A, Foundations & Advances, 71(Pt 1), 3–8. https://doi.org/10.1107/S2053273314026370
  • Spackman, M. A., & Byrom, P. G. (1997). A novel definition of a molecule in a crystal. Chemical Physics Letters, 267(3–4), 215–220. https://doi.org/10.1016/S0009-2614(97)00100-0
  • Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19–32. https://doi.org/10.1039/B818330A
  • Suenaga, K., Kigoshi, H., & Yamada, K. (1996). Auripyrones A and B, cytotoxic polypropionates from the sea hare Dolabella auricularia: Isolation and structures. Tetrahedron Letters, 37(29), 5151–5154. https://doi.org/10.1016/0040-4039(96)01041-6
  • Tempone, A. G., Ferreira, D. D., Lima, M. L., Costa Silva, T. A., Borborema, S. E. T., Reimão, J. Q., Galuppo, M. K., Guerra, J. M., Russell, A. J., Wynne, G. M., Lai, R. Y. L., Cadelis, M. M., & Copp, B. R. (2017). Efficacy of a series of alpha-pyrone derivatives against Leishmania (L.) infantum and Trypanosoma cruzi. European Journal of Medicinal Chemistry, 139, 947–960. https://doi.org/10.1016/j.ejmech.2017.08.055
  • Thaisrivongs, S., Romero, D. L., Tommasi, R. A., Janakiraman, M. N., Strohbach, J. W., Turner, S. R., Biles, C., Morge, R. R., Johnson, P. D., Aristoff, P. A., Tomich, P. K., Lynn, J. C., Horng, M. M., Chong, K. T., Hinshaw, R. R., Howe, W. J., Finzel, B. C., & Watenpaugh, K. D. (1996). Structure-based design of HIV protease inhibitors: 5, 6-dihydro-4-hydroxy-2-pyrones as effective, nonpeptidic inhibitors. Journal of Medicinal Chemistry, 39(23), 4630–4642. https://doi.org/10.1021/jm960228q
  • Turner, S. R., Strohbach, J. W., Tommasi, R. A., Aristoff, P. A., Johnson, P. D., Skulnick, H. I., Dolak, L. A., Seest, E. P., Tomich, P. K., Bohanon, M. J., Horng, M. M., Lynn, J. C., Chong, K. T., Hinshaw, R. R., Watenpaugh, K. D., Janakiraman, M. N., & Thaisrivongs, S. (1998). Tipranavir (PNU-140690): A potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5, 6-dihydro-4-hydroxy-2-pyrone sulfonamide class. Journal of Medicinal Chemistry, 41(18), 3467–3476. https://doi.org/10.1021/jm9802158
  • Ui, H., Shiomi, K., Suzuki, H., Hatano, H., Morimoto, H., Yamaguchi, Y., Masuma, R., Sunazuka, T., Shimamura, H., Sakamoto, K., Kita, K., Miyoshi, H., Tomoda, H., & Omura, S. (2006). Verticipyrone, a new NADH-fumarate reductase inhibitor, produced by Verticillium sp. FKI-1083. The Journal of Antibiotics, 59(12), 785–790. https://doi.org/10.1038/ja.2006.103
  • Vardaro, R. R., Di Marzo, V., Crispino, A., & Cimino, G. (1991). Cyercenes, novel polypropionate pyrones from the autotomizing mediterranean mollusc cyerce cristallina. Tetrahedron, 47(29), 5569–5576. https://doi.org/10.1016/S0040-4020(01)80988-1
  • Wilk, W., Waldmann, H., & Kaiser, M. (2009). γ-Pyrone natural products—A privileged compound class provided by nature. Bioorganic & Medicinal Chemistry, 17(6), 2304–2309. https://doi.org/10.1016/j.bmc.2008.11.001
  • Woo, S.-J., Kim, M.-J., Kim, R.-K., Yoon, C.-H., Lim, E.-J., An, S., Suh, Y., Song, J.-Y., Kim, I. G., Cho, C.-G., & Lee, S.-J. (2012). A new 2-pyrone derivative, 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one, synergistically enhances radiation sensitivity in human cervical cancer cells. Anti-Cancer Drugs, 23(1), 43–50. https://doi.org/10.1097/CAD.0b013e32834a66ef
  • Yoon, J. S., Won, Y. W., Kim, S. J., Oh, S. J., Kim, E. S., Kim, B. K., Cho, C. G., Choi, J. H., Park, B. B., Lee, M. H., & Lee, Y. Y. (2012). Anti-leukemic effect of 2-pyrone derivatives via MAPK and PI3 kinase pathways. Investigational New Drugs, 30(6), 2284–2293. https://doi.org/10.1007/s10637-012-9814-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.