201
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural analysis of alternate sigma factor ComX with RpoC, RpoB and its cognate CIN promoter reveals a distinctive promoter melting mechanism

, &
Pages 6272-6285 | Received 05 Oct 2020, Accepted 22 Jan 2021, Published online: 08 Feb 2021

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Arthur, T. M., & Burgess, R. R. (1998). Localization of a sigma70 binding site on the N terminus of the Escherichia coli RNA polymerase beta' subunit. Journal of Biological Chemistry, 273(47), 31381–31387. https://doi.org/10.1074/jbc.273.47.31381
  • Borukhov, S., & Nudler, E. (2003). RNA polymerase holoenzyme: Structure, function and biological implications. Current Opinion in Microbiology, 6(2), 93–100. https://doi.org/10.1016/s1369-5274(03)00036-5
  • Campagne, S., Marsh, M. E., Capitani, G., Vorholt, J. A., & Allain, F. H. (2014). Structural basis for -10 promoter element melting by environmentally induced sigma factors. Nature Structural & Molecular Biology, 21(3), 269–276. https://doi.org/10.1038/nsmb.2777
  • Chlenov, M., Masuda, S., Murakami, K. S., Nikiforov, V., Darst, S. A., & Mustaev, A. (2005). Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta' subunit. Journal of Molecular Biology, 353(1), 138–154. https://doi.org/10.1016/j.jmb.2005.07.073
  • Cunningham, M. W. (2000). Pathogenesis of group A streptococcal infections. Clinical Microbiology Reviews, 13(3), 470–511. https://doi.org/10.1128/CMR.13.3.470
  • de Vries, S. J., van Dijk, A. D. J., Krzeminski, M., van Dijk, M., Thureau, A., Hsu, V., Wassenaar, T., & Bonvin, A. M. J. J. (2007). Haddock versus Haddock: New features and performance of Haddock2.0 on the CAPRI targets. Proteins, 69(4), 726–733. https://doi.org/10.1002/prot.21723
  • Dominguez, C., Boelens, R., & Bonvin, A. M. (2003). Haddock: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939x
  • Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 4), 486–501. https://doi.org/10.1107/S0907444910007493
  • Fang, C., Li, L., Shen, L., Shi, J., Wang, S., Feng, Y., & Zhang, Y. (2019). Structures and mechanism of transcription initiation by bacterial ECF factors. Nucleic Acids Research, 47(13), 7094–7104. https://doi.org/10.1093/nar/gkz470
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Goldman, S. R., Ebright, R. H., & Nickels, B. E. (2009). Direct detection of abortive RNA transcripts in vivo. Science (New York, N.Y.), 324(5929), 927–928. https://doi.org/10.1126/science.1169237
  • Helmann, J. D., & Chamberlin, M. J. (1988). Structure and function of bacterial sigma factors. Annual Review of Biochemistry, 57, 839–872. https://doi.org/10.1146/annurev.bi.57.070188.004203
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(sici)1096-987x(199709)18:12 < 1463::aid-jcc4 > 3.0.co;2-h
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Iyer, L. M., Koonin, E. V., & Aravind, L. (2004). Evolution of bacterial RNA polymerase: Implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. Gene, 335, 73–88. https://doi.org/10.1016/j.gene.2004.03.017
  • Jokerst, R. S., Weeks, J. R., Zehring, W. A., & Greenleaf, A. L. (1989). Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila. Molecular & General Genetics: MGG, 215(2), 266–275. https://doi.org/10.1007/BF00339727
  • Joyce, C. M., & Steitz, T. A. (1994). Function and structure relationships in DNA polymerases. Annual Review of Biochemistry, 63, 777–822. https://doi.org/10.1146/annurev.bi.63.070194.004021
  • Kapur, V., Li, L. L., Iordanescu, S., Hamrick, M. R., Wanger, A., Kreiswirth, B. N., & Musser, J. M. (1994). Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. Journal of Clinical Microbiology, 32(4), 1095–1098. https://doi.org/10.1128/JCM.32.4.1095-1098.1994
  • Kawata, M., & Nagashima, U. (2001). Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chemical Physics Letters, 340(1–2), 165–172. https://doi.org/10.1016/S0009-2614(01)00393-1
  • Kazmierczak, M. J., Wiedmann, M., & Boor, K. J. (2005). Alternative sigma factors and their roles in bacterial virulence. Microbiology and Molecular Biology Reviews: MMBR, 69(4), 527–543. https://doi.org/10.1128/MMBR.69.4.527-543.2005
  • Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., & Darst, S. A. (2000). A structural model of transcription elongation. Science (New York, N.Y.), 289(5479), 619–625. https://doi.org/10.1126/science.289.5479.619
  • Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774–797. https://doi.org/10.1016/j.jmb.2007.05.022
  • Li, L., Fang, C., Zhuang, N., Wang, T., & Zhang, Y. (2019). Structural basis for transcription initiation by bacterial ECF σ factors. Nature Communications, 10(1), 1153. https://doi.org/10.1038/s41467-019-09096-y
  • Lisitsyn, N. A., Sverdlov, E. D., Moiseyeva, E. P., Danilevskaya, O. N., & Nikiforov, V. G. (1984). Mutation to rifampicin resistance at the beginning of the RNA polymerase beta subunit gene in Escherichia coli. Molecular Genetics and Genomics, 196(1), 173–174. https://doi.org/10.1007/BF00334112
  • Lonetto, M., Gribskov, M., & Gross, C. A. (1992). The sigma 70 family: Sequence conservation and evolutionary relationships. Journal of Bacteriology, 174(12), 3843–3849. https://doi.org/10.1128/jb.174.12.3843-3849.1992
  • Maisuradze, G. G., & Leitner, D. M. (2007). Free energy landscape of a biomolecule in dihedral principal component space: Sampling convergence and correspondence between structures and minima. Proteins, 67(3), 569–578. https://doi.org/10.1002/prot.21344
  • Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., … Bryant, S. H. (2017). CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(D1), D200–D203. https://doi.org/10.1093/nar/gkw1129
  • Markov, D., Naryshkina, T., Mustaev, A., & Severinov, K. (1999). A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly. Genes & Development, 13(18), 2439–2448. https://doi.org/10.1101/gad.13.18.2439
  • Martonak, R., Laio, A., & Parrinello, M. (2003). Predicting crystal structures: The Parrinello-Rahman method revisited. Physical Review Letters, 90(7), 075503. https://doi.org/10.1103/PhysRevLett.90.075503
  • Mashburn-Warren, L., Morrison, D. A., & Federle, M. J. (2012). The cryptic competence pathway in Streptococcus pyogenes is controlled by a peptide pheromone. Journal of Bacteriology, 194(17), 4589–4600. https://doi.org/10.1128/JB.00830-12
  • McClure, W. R., Cech, C. L., & Johnston, D. E. (1978). A steady state assay for the RNA polymerase initiation reaction. The Journal of Biological Chemistry, 253(24), 8941–8948.
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Murakami, K. S., Masuda, S., & Darst, S. A. (2002). Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science (New York, N.Y.), 296(5571), 1280–1284. https://doi.org/10.1126/science.1069594
  • Nomura, T., Ishihama, A., Kajitani, M., Takahashi, T., Nakada, N., & Yoshinaga, K. (1984). Promoter selectivity of Escherichia coli RNA polymerase. II: Altered promoter selection by mutant holoenzymes. Molecular & General Genetics: MGG, 193(1), 8–16. https://doi.org/10.1007/BF00327407
  • Opdyke, J. A., Scott, J. R., & Moran, C. P., Jr. (2001). A secondary RNA polymerase sigma factor from Streptococcus pyogenes. Molecular Microbiology, 42(2), 495–502. https://doi.org/10.1046/j.1365-2958.2001.02657.x
  • Pons, J. L., & Labesse, G. (2009). @TOME-2: A new pipeline for comparative modeling of protein-ligand complexes. Nucleic Acids Research, 37(Web Server issue), W485–491. https://doi.org/10.1093/nar/gkp368
  • Saecker, R. M., Record, M. T., Jr., & Dehaseth, P. L. (2011). Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. Journal of Molecular Biology, 412(5), 754–771. https://doi.org/10.1016/j.jmb.2011.01.018
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539. https://doi.org/10.1038/msb.2011.75
  • Stevens, D. L. (1995). Streptococcal toxic-shock syndrome: Spectrum of disease, pathogenesis, and new concepts in treatment. Emerging Infectious Diseases, 1(3), 69–78. https://doi.org/10.3201/eid0103.950301
  • Stevens, D. L., Tanner, M. H., Winship, J., Swarts, R., Ries, K. M., Schlievert, P. M., & Kaplan, E. (1989). Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. The New England Journal of Medicine, 321(1), 1–7. https://doi.org/10.1056/NEJM198907063210101
  • Sweetser, D., Nonet, M., & Young, R. A. (1987). Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proceedings of the National Academy of Sciences of the United States of America, 84(5), 1192–1196. https://doi.org/10.1073/pnas.84.5.1192
  • Tan, L. K., Eccersley, L. R., & Sriskandan, S. (2014). Current views of haemolytic streptococcal pathogenesis. Current Opinion in Infectious Diseases, 27(2), 155–164. https://doi.org/10.1097/QCO.0000000000000047
  • Toulokhonov, I., & Landick, R. (2006). The role of the lid element in transcription by E. coli RNA polymerase. Journal of Molecular Biology, 361(4), 644–658. https://doi.org/10.1016/j.jmb.2006.06.071
  • Tuske, S., Sarafianos, S. G., Wang, X., Hudson, B., Sineva, E., Mukhopadhyay, J., Birktoft, J. J., Leroy, O., Ismail, S., Clark, A. D., Dharia, C., Napoli, A., Laptenko, O., Lee, J., Borukhov, S., Ebright, R. H., & Arnold, E. (2005). Inhibition of bacterial RNA polymerase by streptolydigin: Stabilization of a straight-bridge-helix active-center conformation. Cell, 122(4), 541–552. https://doi.org/10.1016/j.cell.2005.07.017
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vassylyev, D. G., Vassylyeva, M. N., Perederina, A., Tahirov, T. H., & Artsimovitch, I. (2007). Structural basis for transcription elongation by bacterial RNA polymerase. Nature, 448(7150), 157–162. https://doi.org/10.1038/nature05932
  • Veasy, L. G., Wiedmeier, S. E., Orsmond, G. S., Ruttenberg, H. D., Boucek, M. M., Roth, S. J., Tait, V. F., Thompson, J. A., Daly, J. A., & Kaplan, E. L. (1987). Resurgence of acute rheumatic fever in the intermountain area of the United States. The New England Journal of Medicine, 316(8), 421–427. https://doi.org/10.1056/NEJM198702193160801
  • Wang, D., Bushnell, D. A., Westover, K. D., Kaplan, C. D., & Kornberg, R. D. (2006). Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis. Cell, 127(5), 941–954. https://doi.org/10.1016/j.cell.2006.11.023
  • Webb, B., & Sali, A. (2017). Protein structure modeling with MODELLER. Methods in Molecular Biology (Clifton, N.J.), 1654, 39–54. https://doi.org/10.1007/978-1-4939-7231-9_4
  • Yura, T., & Ishihama, A. (1979). Genetics of bacterial RNA polymerases. Annual Review of Genetics, 13, 59–97. https://doi.org/10.1146/annurev.ge.13.120179.000423
  • Zaychikov, E., Martin, E., Denissova, L., Kozlov, M., Markovtsov, V., Kashlev, M., Heumann, H., Nikiforov, V., Goldfarb, A., & Mustaev, A. (1996). Mapping of catalytic residues in the RNA polymerase active center. Science (New York, N.Y.), 273(5271), 107–109. https://doi.org/10.1126/science.273.5271.107
  • Zhang, G., Campbell, E. A., Minakhin, L., Richter, C., Severinov, K., & Darst, S. A. (1999). Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell, 98(6), 811–824. https://doi.org/10.1016/S0092-8674(00)81515-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.