152
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Functional annotation and comparative modeling of ligninolytic enzymes from Trametes villosa (SW.) Kreisel for biotechnological applications

, , , , , ORCID Icon, , ORCID Icon & show all
Pages 6330-6339 | Received 17 Jan 2020, Accepted 23 Jan 2021, Published online: 08 Feb 2021

References

  • Ayuso‐Fernández, I., De Lacey, A., Cañada, F. J., Ruiz-Dueñas, F. J., & Martinez, A. T. (2019). Increase of redox potential during the evolution of enzymes degrading recalcitrant lignin. Chemistry (Weinheim an Der Bergstrasse, Germany), 25(11), 2708–2712. https://doi.org/10.1002/chem.201805679
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England), 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662.
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(suppl_2), W510–514. https://doi.org/10.1093/nar/gkp322
  • Berman, H. M., Westbrook, Feng, J., Gilliland, Z., Bhat, G., Weissig, T. N., Shindyalov, H., & Bourne, I. N., P. E. (2000). The protein data bank. In International tables for crystallography.
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252–258. https://doi.org/10.1093/nar/gku340
  • Blodig, W., Smith, A. T., Doyle, W. A., & Piontek, K. (2001). Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism1. Journal of Molecular Biology, 305(4), 851–861. https://doi.org/10.1006/jmbi.2000.4346.
  • Bukh, C., Lund, M., & Bjerrum, M. J. (2006). Kinetic studies on the reaction between Trametes villosa laccase and dioxygen. Journal of Inorganic Biochemistry, 100(9), 1547–1557. https://doi.org/10.1016/j.jinorgbio.2006.05.007.
  • Carneiro, R. T. O., Lopes, M. A., Silva, M. L. C., Santos, V. S., de Souza, V. B., de Sousa, A., Pirovani, O., C. P., Koblitz, M. G. B., Benevides, R. G., & Góes-Neto, A. (2017). Trametes villosa lignin peroxidase (TvLiP): Genetic and molecular characterization. Journal of Microbiology and Biotechnology, 27(1), 179–188. https://doi.org/10.4014/jmb.1606.06055
  • Choinowski, T., Blodig, W., Winterhalter, K., & Piontek, H. K. (1999). The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle. Journal of Molecular Biology, 286(3), 809–827. https://doi.org/10.1006/jmbi.1998.2507.
  • Coconi-Linares, N., Ortiz-Vázquez, E., Fernández, F., Loske, A. M., & Gómez-Lim, M. A. (2015). Recombinant expression of four oxidoreductases in Phanerochaete chrysosporium improves degradation of phenolic and non-phenolic substrates. Journal of Biotechnology, 209, 76–84. https://doi.org/10.1016/j.jbiotec.2015.06.401.
  • Cohen, R., Persky, L., Hazan-Eitan, Z., Yarden, O., & Hadar, Y. (2002). Mn 2+ alters peroxidase profiles and lignin degradation by the white-rot fungus Pleurotus ostreatus under different nutritional and growth conditions. Applied Biochemistry and Biotechnology, 102–103(1–6), 415–429. https://doi.org/10.1385/ABAB:102-103:1-6:415
  • Conesa, A., Punt, P. L., & van den Hondel, C. A. M. J. J. (2002). Fungal peroxidases: Molecular aspects and applications. Journal of Biotechnology, 93(2), 143–158. https://doi.org/10.1016/S0168-1656(01)00394-7
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1), 36–50.
  • Daura, X., van Gunsteren, W. F., & Mark, A. E. (1999). Folding–unfolding thermodynamics of a β‐heptapeptide from equilibrium simulations. Proteins: Structure, Function, and Genetics, 34(3), 269–280. https://doi.org/10.1002/(SICI)1097-0134(19990215)34:3<269::AID-PROT1>3.0.CO;2-3
  • Di Donato, P., Fiorentino, G., Anzelmo, G., Tommonaro, G., Nicolaus, B., & Poli, A. (2011). Re-use of vegetable wastes as cheap substrates for extremophile biomass production. Waste and Biomass Valorization, 2(2), 103–111. https://doi.org/10.1007/s12649-011-9062-x
  • Doyle, W. A., & Smith, A. T. (1996). Expression of lignin peroxidase H8 in Escherichia coli: Folding and activation of the recombinant enzyme with Ca2+ and haem. Biochemical Journal, 315(1), 15–19. https://doi.org/10.1042/bj3150015
  • Eibes, G., Debernardi, G., Feijoo, G., Moreira, M. T., & Lema, J. M. (2011). Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation, 22(3), 539–550. https://doi.org/10.1007/s10532-010-9426-0.
  • Ferreira, D. S. S., Kato, R. B., Miranda, F. M., da Costa Pinheiro, K., Fonseca, P. L. C., Tomé, L. M. R., Vaz, A. B. M., Badotti, F., Ramos, R. T. J., Brenig, B., Azevedo, V. A. d C., Benevides, R. G., & Góes-Neto, A. (2018). Draft genome sequence of Trametes villosa (Sw.) Kreisel CCMB561, a tropical white-rot Basidiomycota from the semiarid region of Brazil. Data in Brief, 18, 1581–1587. https://doi.org/10.1016/j.dib.2018.04.074.
  • Gomes, E., Aguiar, A. P., Carvalho, C. C., Maricy, Bonfá, M. R. B., da Silva, R., & Boscolo, M. (2009). Ligninases production by basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology], 40(1), 31–39. https://doi.org/10.1590/S1517-83822009000100005
  • Grigoriev, I. V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R., Salamov, A., Zhao, X., Korzeniewski, F., Smirnova, T., Nordberg, H., Dubchak, I., & Shabalov, I. (2014). MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Research, 42(D1), D699–704. https://doi.org/10.1093/nar/gkt1183
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Holtje, H. D., Folkers, G., Mannhold, R., Kubinyi, H., & Timmerman, H. H. (1997). Molecular modeling: basic principles and applications. John Wiley & Sons.
  • Huang, S. T., Tzean, S. S., Tsai, B. Y., & Hsieh, H. J. (2009). Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea. Microbiology (Reading, England), 155(Pt 2), 424–433. https://doi.org/10.1099/mic.0.022459-0.
  • Janusz, G., Kucharzyk, K. H., Pawlik, A., Staszczak, M., & Paszczynski, A. J. (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzyme and Microbial Technology, 52(1), 1–12. https://doi.org/10.1016/j.enzmictec.2012.10.003
  • Johansson, T., & Nyman, P. O. (1996). A cluster of genes encoding major isozymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene, 170(1), 31–38. https://doi.org/10.1016/0378-1119(95)00846-2
  • Justo, A., & Hibbett, D. S. (2011). Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset. TAXON, 60(6), 1567–1583. https://doi.org/10.1002/tax.606003
  • Kale, S. K., & Deshmukh, A. G. (2016). 3D structure prediction of lignolytic enzymes lignin peroxidase and manganese peroxidase based on homology modelling. Journal of BioScience & Biotechnology, 5, 1–11.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. https://doi.org/10.1021/ct200196m
  • Martinez, A. T. (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme and Microbial Technology, 30, 425–444. https://doi.org/10.1016/s0141-0229(01)00521-x.
  • Melo, F., Devos, D., Depiereux, E., Feytmans, E. (1997). ANOLEA: a www server to assess protein structures. In Ismb (Vol. 5, pp. 187–190).
  • Neves, M. A., Baseia, I. G., Drechsler-Santos, E. R., & Góes-Neto, A. (2013). Guide to the common fungi of semiarid region of Brazil. TECC.
  • Overbeek, R., Disz, T., & Stevens, R. (2004). The SEED: A peer-to-peer environment for genome annotation. Communications of the ACM, 47(11), 46–51. https://doi.org/10.1145/1029496.1029525
  • Pavlov, A. R., Tyazhelova, T. V., Moiseenko, K. V., Vasina, D. V., Mosunova, O. V., Fedorova, T. V., Maloshenok, L. G., Landesman, E. O., Bruskin, S. A., Psurtseva, N. V., Slesarev, A. I., Kozyavkin, S. A., & Koroleva, O. V. (2015). Draft genome sequence of the fungus Trametes hirsuta 072. Genome Announcements, 3(6). https://doi.org/10.1128/genomeA.01287-15
  • Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/nmeth.1701.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084.
  • Pierleoni, A., Martelli, P. L., Fariselli, P., & Casadio, R. (2006). BaCelLo: A balanced subcellular localization predictor. Bioinformatics (Oxford, England), 22(14), e408–416. https://doi.org/10.1093/bioinformatics/btl222
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055.
  • Recabarren, R., Fuenzalida-Valdivia, I., & Alzate-Morales, J. (2016). Studying the binding mechanisms of veratryl alcohol to P. chrysosporium lignin peroxidase: Insights from theoretical approaches. Theoretical Chemistry Accounts, 135(3), 1–12. https://doi.org/10.1007/s00214-016-1828-6
  • Riley, R., Salamov, A. A., Brown, D. W., Nagy, L. G., Floudas, D., Held, B. W., Levasseur, A., Lombard, V., Morin, E., Otillar, R., Lindquist, E. A., Sun, H., LaButti, K. M., Schmutz, J., Jabbour, D., Luo, H., Baker, S. E., Pisabarro, A. G., Walton, J. D., … Grigoriev, I. V. (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9923–9928. https://doi.org/10.1073/pnas.1400592111.
  • Rostkowski, M., Olsson, M. H., Søndergaard, C. R., & Jensen, J. H. (2011). Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Structural Biology, 11, 6. https://doi.org/10.1186/1472-6807-11-6.
  • Ruiz-Dueñas, F. J., Fernández, E., Martínez, M. J., & Martínez, A. T. (2011). Pleurotus ostreatus heme peroxidases: An in silico analysis from the genome sequence to the enzyme molecular structure. Comptes rendus biologies, 334(11), 795–805. https://doi.org/10.1016/j.crvi.2011.06.004.
  • Ruiz-Duenas, F. J., Morales, M., Garcia, E., Miki, Y., Martinez, M. J., & Martinez, A. T. (2009). Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. Journal of Experimental Botany, 60(2), 441–452. https://doi.org/10.1093/jxb/ern261.
  • Schrödinger, L. L. C. (2016). PyMol: the PyMOL molecular graphics system, version 2.0. Schrödinger LLC.
  • Shukla, A., Gundampati, R. K., Rajasekhar, C., & Jagannadham, M. V. (2016). Homology modeling and molecular docking of heme peroxidase from Euphorbia tirucalli: Substrate specificity and thiol inhibitor interactions. Journal of Molecular Liquids, 220, 383–394. https://doi.org/10.1016/j.molliq.2016.04.102
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539. https://doi.org/10.1038/msb.2011.75
  • Silva, M. L. C., Souza, V. B. D., Santos, V. D. S., Kamida, H. M., Vasconcellos-Neto, J. R. T. D., Góes-Neto, A., & Bello Koblitz, M. G. (2014). Production of manganese peroxidase by Trametes villosa on unexpensive substrate and its application in the removal of lignin from agricultural wastes. Advances in Bioscience and Biotechnology, 5(14), 1067–2014. https://doi.org/10.4236/abb.2014.514122
  • Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(suppl_2), W465–467. https://doi.org/10.1093/nar/gki458
  • Taurisano, V., Anzelmo, G., Poli, A., Nicolaus, B., & Di Donato, P. (2014). Re-use of agro-industrial waste: Recovery of valuable compounds by eco-friendly techniques. International Journal of Performability Engineering, 10, 419–425.
  • Verlet, L. (1967). Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(1), 98–103. https://doi.org/10.1103/PhysRev.159.98
  • Verli, H. (2014). Bioinformática: da biologia à flexibilidade molecular.,
  • Wang, W., & Wen, X. (2009). Expression of lignin peroxidase H2 from Phanerochaete chrysosporium by multi-copy recombinant Pichia strain. Journal of Environmental Sciences, 21(2), 218–222. https://doi.org/10.1016/S1001-0742(08)62254-8
  • Webb, B., & Sali, A. (2014). Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics, 47, 5.6.1–6.32. https://doi.org/10.1002/0471250953.bi0506s47.
  • Wheeler, D. L., Chappey, C., Lash, A. E., Leipe, D. D., Madden, T. L., Schuler, G. D., Tatusova, T. A., & Rapp, B. A. (2000). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 28(1), 10–14. https://doi.org/10.1093/nar/28.1.10.
  • Wong, D. W. S. (2009). Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, 157(2), 174–209. https://doi.org/10.1007/s12010-008-8279-z.
  • Yaver, D. S., Xu, F., Golightly, E. J., Brown, K. M., Brown, S. H., Rey, M. W., Schneider, P., Halkier, T., Mondorf, K., & Dalboge, H. (1996). Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Applied and Environmental Microbiology, 62(3), 834–841. https://doi.org/10.1128/AEM.62.3.834-841.1996
  • Zámocký, M., Hofbauer, S., Schaffner, I., Gasselhuber, B., Nicolussi, A., Soudi, M., Pirker, K. F., Furtmüller, P. G., & Obinger, C. (2015). Independent evolution of four heme peroxidase superfamilies. Archives of Biochemistry and Biophysics, 574, 108–119. https://doi.org/10.1016/j.abb.2014.12.025
  • Zhang, L., & Skolnick, J. (1998). What should the Z-score of native protein structures be? Protein Science : a Publication of the Protein Society, 7(5), 1201–1207. https://doi.org/10.1002/pro.5560070515
  • Zimmermann, L., Stephens, A., Nam, S.-Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas, A. N., & Alva, V. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. Journal of Molecular Biology, 430(15), 2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.