168
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of binding of potential ADMET/tox screened saquinavir analogues for inhibition of HIV-protease via molecular dynamics and binding free energy calculations

, , &
Pages 6439-6449 | Received 12 Feb 2020, Accepted 29 Jan 2021, Published online: 04 Mar 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Barcellos, M. P., Santos, B. R. C., Federico, L. B., de Almeida, P. F., da Silva, C. H. T. P., & Taft, C. A. (2019). Pharmacophore and structure-based drug design, molecular dynamics and admet/tox studies to design novel potential pad4 inhibitors. Journal of Biomolecular Structure & Dynamics, 37(4), 966–981. https://doi.org/10.1080/07391102.2018.1444511
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, R. (1984). Molecular-dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank www.rcsb.org/pdb. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Borhani, D. W., & Shaw, D. E. (2012). The future of molecular dynamics simulations in drug discovery. Journal of Computer-Aided Molecular Design, 26(1), 15–26. https://doi.org/10.1007/s10822-011-9517-y Case, D. A., Belfon, K., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., III, Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R, Izadi, S., Iz-mailov, S. A., Kasavajhala, K., Kovalenko, A., Krasny, R., Kurtzman, T., et al. (2020), AMBER 2020. University of California.
  • Chinnasamy, K., Saravanan, M., & Kumaradhas, P. (2020). Evaluation of binding and antagonism/downregulation of brilanestrant molecule in estrogen receptor-α via quantum mechanics/molecular mechanics, molecular dynamics and binding free energy calculations. Journal of Biomolecular Structure & Dynamics, 38(1), 219–235. https://doi.org/10.1080/07391102.2019.1574605
  • Da Silva, A. W. S., & Vranken, W. F. (2012). ACPYPE – AnteChamber PYthon Parser interfacE . BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • DePaul, A. J., Thompson, E. J., Patel, S. S., Haldeman, K., & Sorin, E. J. (2010). Equilibrium conformational dynamics in an RNA tetra loop from massively parallel molecular dynamics. Nucleic Acids Research, 38(14), 4856–4867. https://doi.org/10.1093/nar/gkq134
  • Freedberg, D. I., Ishima, R., Jacob, J., Wang, Y. X., Kustanovich, I., Louis, J. M., & Torchia, D. A. (2002). Rapid structural fluctuations of the free HIV protease flaps in solution: Relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Science, 11(2), 221–232. https://doi.org/10.1110/ps.33202
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gohlke, H., & Case, D. A. (2004). Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras-Raf . Journal of Computational Chemistry, 25(2), 238–250. https://doi.org/10.1002/jcc.10379
  • Gohlke, H., & Klebe, G. (2002). Approaches to the description and prediction of the binding 14 411 affinity of small‐molecule ligands to macromolecular receptors. Angewandte Chemie International Edition, 41(15), 2644–2676. https://doi.org/10.1002/15213773(20020802)41:15%3C2644::AID-ANIE2644%3E3.0.CO;2-O
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q 27
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Molecular Informatics, 31(2), 114–122. https://doi.org/10.1002/minf.201100135
  • Homeyer, N., & Gohlke, H. (2013). FEW: A workflow tool for free energy calculations of ligand binding. Journal of Computational Chemistry, 34(11), 965–973. https://doi.org/10.1002/jcc.23218
  • Homeyer, N., Stoll, F., Hillisch, A., & Gohlke, H. (2014). Binding free energy calculations for lead optimization: Assessment of their accuracy in an industrial drug design context. Journal of Chemical Theory and Computation, 10(8), 3331–3344. https://doi.org/10.1021/ct5000296
  • Hornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006). HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proceedings of the National Academy of Sciences, 103(4), 915–920. https://doi.org/10.1073/pnas.0508452103
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011a). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011b). Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. Journal of Computational Chemistry, 32(5), 866–877. https://doi.org/10.1002/jcc.21666
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641.https://doi.org/10.1002/jcc.10128
  • Jayaraman, S., & Shah, K. (2008). Comparative studies on inhibitors of HIV protease: A target for drug design. In Silico Biology, 8(5-6), 427–447.
  • Jayaswal, A., Mishra, A., Mishra, H., & Shah, K. (2014). Evaluation of novel saquinavir analogs for resistance mutation compatibility and potential as an HIV-protease inhibitor drug. Bioinformation, 10(4), 227–232. https://doi.org/10.6026/97320630010227
  • Jayaswal, A., Mishra, H., Mishra, A., & Shah, K. (2019). Examining pharmacodynamic and pharmacokinetic properties of eleven analogues of saquinavir for HIV protease inhibition. Archives of Virology, 164(4), 949–960. https://doi.org/10.1007/s00705-019-04153-9
  • Jorgensen, W. L., Bollini, M., Thakur, V. V., Domaoal, R. A., Spasov, K. A., & Anderson, K. S. (2011). Efficient discovery of potent anti-HIV agents targeting the Tyr181Cys variant of HIV reverse transcriptase. Journal of the American Chemical Society, 133(39), 15686–15696. https://doi.org/10.1021/ja2058583
  • Karplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6679–6685. https://doi.org/10.1073/pnas.0408930102
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lepsík, M., Kríz, Z., & Havlas, Z. (2004). Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Proteins, 57(2), 279–293. https://doi.org/10.1002/prot.20192
  • Meagher, K. L., & Carlson, H. A. (2005). Solvation influences flap collapse in HIV‐1 protease. Proteins: Structure, Function, and Bioinformatics, 58(1), 119–125. https://doi.org/10.1002/prot.20274
  • Miller, B. R., III, McGee, T. D., Jr, Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Unravelling hot spots: A comprehensive computational mutagenesis study. Theoretical Chemistry Accounts, 117(1), 99–113. https://doi.org/10.1007/s00214-006-0151-z
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Price, D. J., & Brooks, C. L. III, (2004). A modified TIP3P water potential for simulation with Ewald summation. The Journal of Chemical Physics, 121(20), 10096–10103. https://doi.org/10.1063/1.1808117
  • Rajasekaran, A., Abraham, S., Mohanasundaram, S., & Gurusamy, P. (2020). Synthesis and the study of bioefficacy of Schiff base ligand decorated by pyrazolone moiety. Oriental Journal of Chemistry, 36 (02), 244–253. https://doi.org/10.13005/ojc/360205
  • Réblová, K., Střelcová, Z., Kulhánek, P., Beššeová, I., Mathews, D. H., Van Nostrand, K., Yildirim, I., Turner, D. H., & Šponer, J. (2010). An RNA molecular switch: Intrinsic flexibility of 23S rRNA helices 40 and 68 5'-UAA/5'-GAN Internal Loops Studied by Molecular Dynamics Methods. Journal of Chemical Theory and Computation, 6(3), 910–929. https://doi.org/10.1021/ct900440t
  • Shah, K., Gupta, S., Mishra, H., Sharma, P. K., & Jayaswal, A. (2014). Examining structural analogs of elvitegravir as potential inhibitors of HIV-1 integrase. Archives of Virology, 159(8), 2069–2080. https://doi.org/10.1007/s00705-014-2038-y
  • Shukla, R., & Singh, T. R. (2020). Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics, 38(1), 248–262. https://doi.org/10.1080/07391102.2019.1571947
  • Sirin, S., Pearlman, D. A., & Sherman, W. (2014). Physics-based enzyme design: predicting binding affinity and catalytic activity. Proteins, 82(12), 3397–3409. https://doi.org/10.1002/prot.24694
  • Sorin, E. J., & Pande, V. S. (2005). Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophysical Journal, 88(4), 2472–2493. https://doi.org/10.1529/biophysj.104.051938
  • Špačková, N. A., Cheatham, T. E., Ryjáček, F., Lankaš, F., Van Meervelt, L., Hobza, P., & Šponer, J. (2003). Molecular dynamics simulations and thermodynamics analysis of DNA-drug complexes. Minor groove binding between 4',6-diamidino-2-phenylindole and DNA duplexes in solution. Journal of the American Chemical Society, 125(7), 1759–1769. https://doi.org/10.1021/ja025660d
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate − DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844 + 
  • Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics, 16(31), 16719–16729. https://doi.org/10.1039/C4CP01388C
  • Tie, Y., Kovalevsky, A. Y., Boross, P., Wang, Y. F., Ghosh, A. K., Tozser, J., Harrison, R. W., & Weber, I. T. (2007). Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir. Proteins, 67(1), 232–242. https://doi.org/10.1002/prot.21304
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vondrasek, J., & Wlodawer, A. (2002). HIVdb: A database of the structures of human immunodeficiency virus protease. Proteins: Structure, Function, and Genetics, 49(4), 429–431. https://doi.org/10.1002/prot.10246
  • Whitford, D. (2005). Proteins: Structure and function (pp. 443–447). John Wiley and Sons.
  • Yadava, U., Gupta, H., & Roychoudhury, M. (2015). Stabilization of microtubules by taxane diterpenoids: Insight from docking and MD simulations. Journal of Biological Physics, 41(2), 117–133. https://doi.org/10.1007/s10867-014-9369-5
  • Yadava, U., Yadav, V. K., & Yadav, R. K. (2017). Novel anti-tubulin agents from plant and marine origins: Insight from a molecular modeling and dynamics study. RSC Advances, 7(26), 15917–15925. https://doi.org/10.1039/C7RA00370F
  • Zeevaart, J. G., Wang, L., Thakur, V. V., Leung, C. S., Tirado-Rives, J., Bailey, C. M., Domaoal, R. A., Anderson, K. S., & Jorgensen, W. L. (2008). Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations. Journal of the American Chemical Society, 130(29), 9492–9499. https://doi.org/10.1021/ja8019214
  • Zoete, V., Michielin, O., & Karplus, M. (2002). Relation between sequence and structure of HIV-1 protease inhibitor complexes: A model system for the analysis of protein flexibility. Journal of Molecular Biology, 315(1), 21–52. https://doi.org/10.1006/jmbi.2001.5173

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.