1,957
Views
22
CrossRef citations to date
0
Altmetric
Research Articles

Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6545-6555 | Received 17 Oct 2020, Accepted 01 Feb 2021, Published online: 13 Feb 2021

References

  • Becerra‐Flores, M., & Cardozo, T. (2020). SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. International Journal of Clinical Practice, 74(8), e13525. https://doi.org/10.1111/ijcp.13525
  • Benetti, E. (2020). ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Genetic and Genomic Medicine. Advance online publication. https://doi.org/10.1101/2020.04.03.20047977
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bosso, M., Thanaraj, T. A., Abu-Farha, M., Alanbaei, M., Abubaker, J., & Al-Mulla, F. (2020). The two faces of ACE2: The role of ACE2 receptor and its polymorphisms in hypertension and COVID-19. Molecular Therapy. Methods & Clinical Development, 18, 321–327. https://doi.org/10.1016/j.omtm.2020.06.017
  • Burrell, L. M., Harrap, S. B., Velkoska, E., & Patel, S. K. (2013). The ACE2 gene: Its potential as a functional candidate for cardiovascular disease. Clinical Science (London, England: 1979), 124(2), 65–76. https://doi.org/10.1042/CS20120269
  • Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., Wen, F., Huang, X., Ning, G., & Wang, W. (2020). Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discovery, 6(1) 4 https://doi.org/10.1038/s41421-020-0147-1
  • Ceraolo, C., & Giorgi, F. M. (2020). Genomic variance of the 2019-nCoV coronavirus. Journal of Medical Virology, 92(5), 522–528. https://doi.org/10.1002/jmv.25700
  • Darbani, B. (2020). The expression and polymorphism of entry machinery for COVID-19 in human: Juxtaposing population groups, gender, and different tissues. International Journal of Environmental Research and Public Health, 17(10), 3433. https://doi.org/10.3390/ijerph17103433
  • Fratev, F. (2020). The N501Y and K417N mutations in the spike protein of SARS-CoV-2 alter the interactions with both hACE2 and human derived antibody: A Free energy of perturbation study. Molecular Biology. Advance online publication. https://doi.org/10.1101/2020.12.23.424283
  • Goodford, P. J. (1985). A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. Journal of Medicinal Chemistry, 28(7), 849–857. https://doi.org/10.1021/jm00145a002
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Grove, J., & Marsh, M. (2011). The cell biology of receptor-mediated virus entry. The Journal of Cell Biology, 195(7), 1071–1082. https://doi.org/10.1083/jcb.201108131
  • Grubaugh, N. D., Hanage, W. P., & Rasmussen, A. L. (2020). Making sense of mutation: What D614G means for the COVID-19 pandemic remains unclear. Cell, 182(4), 794–795. https://doi.org/10.1016/j.cell.2020.06.040
  • Guzzi, P. H., Mercatelli, D., Ceraolo, C., & Giorgi, F. M. (2020). Master Regulator Analysis of the SARS-CoV-2/Human Interactome. Journal of Clinical Medicine, 9(4), 982. https://doi.org/10.3390/jcm9040982
  • Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., & Neher, R. A. (2018). Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics (Oxford, England), 34(23), 4121–4123. https://doi.org/10.1093/bioinformatics/bty407
  • Hanson, Q. M. (2020). Targeting ACE2-RBD interaction as a platform for COVID19 therapeutics: Development and drug repurposing screen of an AlphaLISA proximity assay. bioRxiv. Advance online publication. https://doi.org/10.1101/2020.06.16.154708
  • Hilton, J., & Keeling, M. J. (2020). Estimation of country-level basic reproductive ratios for novel Coronavirus (SARS-CoV-2/COVID-19) using synthetic contact matrices. PLoS Computational Biology, 16(7), e1008031. https://doi.org/10.1371/journal.pcbi.1008031
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Hussain, M. (2020). Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. Journal of Medical Virology, 92(9), 1580–1586. https://doi.org/10.1002/jmv.25832
  • Jackson, L. A. (2020). An mRNA vaccine against SARS-CoV-2 – Preliminary report. New England Journal of Medicine 383, 1920–1931. https://doi.org/10.1056/NEJMoa2022483
  • Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G, Genome Aggregation Database Consortium (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434–443. https://doi.org/10.1038/s41586-020-2308-7
  • Korber, B. (2020). Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. Biorxiv. Advance online publication. https://doi.org/10.1101/2020.04.29.069054
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Leung, K., Shum, M. H., Leung, G. M., Lam, T. T., & Wu, J. T. (2020). Early empirical assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Epidemiology. Advance online publication. https://doi.org/10.1101/2020.12.20.20248581
  • Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin, A. (2018). MUMmer4: A fast and versatile genome alignment system. PLoS Computational Biology, 14(1), e1005944. https://doi.org/10.1371/journal.pcbi.1005944
  • Mercatelli, D., & Giorgi, F. M. (2020). Geographic and genomic distribution of SARS-CoV-2 Mutations. Frontiers in Microbiology, 11, 1800. https://doi.org/10.3389/fmicb.2020.01800
  • Mercatelli, D., Lopez-Garcia, G., & Giorgi, F. M. (2020). corto: A lightweight R package for gene network inference and master regulator analysis. Bioinformatics (Oxford, England), 36(12), 3916–3917. https://doi.org/10.1093/bioinformatics/btaa223
  • Mercatelli, D., Triboli, L., Fornasari, E., Ray, F., & Giorgi, F. M. (2020). Coronapp: A web application to annotate and monitor SARS-CoV-2 mutations. Journal of Medical Virology. Advance online publication. https://doi.org/10.1002/jmv.26678.
  • Meredith, L. W., Hamilton, W. L., Warne, B., Houldcroft, C. J., Hosmillo, M., Jahun, A. S., Curran, M. D., Parmar, S., Caller, L. G., Caddy, S. L., Khokhar, F. A., Yakovleva, A., Hall, G., Feltwell, T., Forrest, S., Sridhar, S., Weekes, M. P., Baker, S., Brown, N., … Goodfellow, I. (2020). Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: A prospective genomic surveillance study. The Lancet Infectious Diseases, 20(11), 1263–1271. https://doi.org/10.1016/S1473-3099(20)30562-4
  • Milazzo, G., Mercatelli, D., Di Muzio, G., Triboli, L., De Rosa, P., Perini, G., & Giorgi, F. M. (2020). Histone deacetylases (HDACs): Evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes, 11(5), 556. https://doi.org/10.3390/genes11050556
  • Ortega, J. T., Serrano, M. L., Pujol, F. H., & Rangel, H. R. (2020). Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI Journal, 19, 410–417.
  • Ortuso, F., Langer, T., & Alcaro, S. (2006). GBPM: GRID-based pharmacophore model: Concept and application studies to protein-protein recognition. Bioinformatics (Oxford, England), 22(12), 1449–1455. https://doi.org/10.1093/bioinformatics/btl115
  • Ou, J. (2020). Emergence of RBD mutations in circulating SARS-CoV-2 strains enhancing the structural stability and human ACE2 receptor affinity of the spike protein. Biorxiv.Advance online publication. https://doi.org/10.1101/2020.03.15.991844
  • Peter, E. K., & Schug, A. (2020). The inhibitory effect of a Corona virus spike protein fragment with ACE2. Biorxiv. Advance online publication. https://doi.org/10.1101/2020.06.03.132506
  • Pinto, B. G. G. (2020). ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. Journal of Infectious Diseases. Advance online publication. https://doi.org/10.1093/infdis/jiaa332.
  • Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations – SARS-CoV-2 coronavirus/nCoV-2019 Genomic Epidemiology - Virological (January 3, 2021). Retrieved from https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
  • PyMOL. (2017). The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC).
  • Sashittal, P., Luo, Y., Peng, J., & El-Kebir, M. (2020). Characterization of SARS-CoV-2 viral diversity within and across hosts. Biorxiv. Advance online publication. https://doi.org/10.1101/2020.05.07.083410
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Shen, Z., Xiao, Y., Kang, L., Ma, W., Shi, L., Zhang, L., Zhou, Z., Yang, J., Zhong, J., Yang, D., Guo, L., Zhang, G., Li, H., Xu, Y., Chen, M., Gao, Z., Wang, J., Ren, L., & Li, M. (2020). Genomic diversity of severe acute respiratory syndrome – Coronavirus 2 in patients with coronavirus disease 2019. Clinical Infectious Diseases, 71(15), 713–720. https://doi.org/10.1093/cid/ciaa203
  • Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311. https://doi.org/10.1093/nar/29.1.308
  • Shu, Y., & McCauley, J. (2017). GISAID: Global initiative on sharing all influenza data – from vision to reality. Euro Surveillance, 22, 30494.
  • Strafella, C., Caputo, V., Termine, A., Barati, S., Gambardella, S., Borgiani, P., Caltagirone, C., Novelli, G., Giardina, E., & Cascella, R. (2020). Analysis of ACE2 genetic variability among populations highlights a possible link with COVID-19-related neurological complications. Genes, 11(7), 741. https://doi.org/10.3390/genes11070741
  • Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular and Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4
  • Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., & Lu, J. (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7(6), 1012–1023. https://doi.org/10.1093/nsr/nwaa036
  • Ulrich, H., & Pillat, M. M. (2020). CD147 as a target for COVID-19 treatment: Suggested effects of azithromycin and stem cell engagement. Stem Cell Reviews and Reports, 16(3), 434–440. https://doi.org/10.1007/s12015-020-09976-7
  • Wang, J., Xu, X., Zhou, X., Chen, P., Liang, H., Li, X., Zhong, W., & Hao, P. (2020). Molecular simulation of SARS-CoV-2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection. The Journal of General Virology, 101(9), 921–924. https://doi.org/10.1099/jgv.0.001452
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045
  • Xia, S., Lan, Q., Su, S., Wang, X., Xu, W., Liu, Z., Zhu, Y., Wang, Q., Lu, L., & Jiang, S. (2020). The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduction and Targeted Therapy, 5(1), 92–93. https://doi.org/10.1038/s41392-020-0184-0
  • Zheng, Z. (2020). Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. Journal of Infection. Advance online publication. https://doi.org/10.1016/j.jinf.2020.04.021.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W., China Novel Coronavirus Investigating and Research Team (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.