829
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, structural, spectral, antioxidant, bioactivity and molecular docking investigations of a novel triazole derivative

, ORCID Icon, ORCID Icon, , &
Pages 6642-6655 | Received 24 Dec 2020, Accepted 04 Feb 2021, Published online: 17 Feb 2021

References

  • Almasirad, A., Shafiee, A., Abdollahi, M., Noeparast, A., Shahrokhinejad, N., Vousooghi, N., Tabatabai, S. A., & Khorasani, R. (2011). Synthesis and analgesic activity of new 1, 3, 4-oxadiazoles and 1, 2, 4-triazoles. Medicinal Chemistry Research, 20(4), 435–442. https://doi.org/10.1007/s00044-010-9335-0
  • Alpaslan, Y. B., Gökce, H., Alpaslan, G., & Macit, M. (2015). Spectroscopic characterization and density functional studies of (Z)-1-[(2-methoxy-5-(trifluoromethyl) phenylamino) methylene] naphthalene-2 (1H)-one. Journal of Molecular Structure, 1097, 171–180. https://doi.org/10.1016/j.molstruc.2015.04.029
  • Alsafi, M. A., Hughes, D. L., & Said, M. A. (2020). First COVID-19 molecular docking with a chalcone-based compound: Synthesis, single-crystal structure and Hirshfeld surface analysis study. Acta Crystallographica Section C: Structural Chemistry, 76(12), 1043–1050.
  • Anderson, R. J., Bendell, D. J., & Groundwater, P. W. (2004). Organic Spectroscopic Analysis., The Royal Society of Chemistry.
  • Aouad, M. R., Messali, M., Rezki, N., Said, M. A., Lentz, D., Zubaydi, L., & Warad, I. (2019). Hydrophobic pocket docking, double-proton prototropic tautomerism in contradiction to single-proton transfer in thione⇔ thiol Schiff base with triazole-thione moiety: Green synthesis, XRD and DFT-analysis. Journal of Molecular Structure, 1180, 455–461. https://doi.org/10.1016/j.molstruc.2018.12.010
  • Avci, D., Atalay, Y., Sekerci, M., & Dincer, M. (2009). Molecular structure and vibrational and chemical shift assignments of 3-(2-hydroxyphenyl)-4-phenyl-1H-1,2,4-triazole-5-(4H)-thione by DFT and ab initio HF calculations. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 73(1), 212–217. https://doi.org/10.1016/j.saa.2009.01.020
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Bellamy, L. J. (1975). The infrared spectra of complex molecules (3rd ed.). John Wiley & Sons.
  • Bhat, M. A., Al-Omar, M. A., Naglah, A. M., Abdulla, M. M., & Fun, H. K. (2015). Synthesis and antitumor activity of 4-cyclohexyl/aryl-5-(pyridin-4-yl)-2, 4-dihydro-3H-1, 2, 4-triazole-3-thiones. Medicinal Chemistry Research, 24(4), 1558–1567. https://doi.org/10.1007/s00044-014-1216-5
  • Cansız, A., Orek, C., Koparir, M., Koparir, P., & Cetin, A. (2012). 4-Allyl-5-pyridin-4-yl-2, 4-dihydro-3H-1, 2, 4-triazole-3-thione: Synthesis, experimental and theoretical characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 136–145. https://doi.org/10.1016/j.saa.2012.01.027
  • Chen, Y., Li, P., Su, S., Chen, M., He, J., Liu, L., He, M., Wang, H., & Xue, W. (2019). Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1, 2, 4-triazole Schiff base. RSC Advances, 9(40), 23045–23052. https://doi.org/10.1039/C9RA05139B
  • Colthup, N. B., Daly, L. H., & Wiberley, E. (1964). Introduction to Infrared and Raman Spectroscopy., Academic Press.
  • CrysAlis PRO 1.171.38.46 (2015) (Rigaku Oxford Diffraction).
  • Dennington, R., T., Keith, & Millam, J. (2009). GaussView. version 5. Semichem Inc.
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A., & Puschmann, H. (2009). OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339–341. https://doi.org/10.1107/S0021889808042726
  • Fatima, U., Rizvi, S. S. A., Raina, N., Fatima, S., Rahman, S., Kamal, M. A., & Hassan, M. (2020). Therapeutic management of COVID-19 patients: Clinical manifestation and limitations. Current Pharmaceutical Design, 26, 1.https://doi.org/10.2174/1381612826666201125112719
  • Ferdian, P. R., Elfirta, R. R., Emilia, Q., & Ikhwani, A. Z. N. (2020). Inhibitory potential of black seed (Nigella Sativa L.) bioactive compounds towards main protease of SARS-CoV-2: In silico study. Annales Bogorienses, 24(2), 81–94. https://doi.org/10.14203/ann.bogor.2020.v24.n2.81-94
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Millam, J. M. (2003). Gaussian 03. Gaussian.
  • Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science (New York, N.Y.), 218(4574), 747–754. https://doi.org/10.1126/science.218.4574.747
  • Gao, F., Wang, T., Xiao, J., & Huang, G. (2019). Antibacterial activity study of 1,2,4-triazole derivatives. European Journal of Medicinal Chemistry, 173, 274–281. https://doi.org/10.1016/j.ejmech.2019.04.043
  • Gökce, H., Alpaslan, Y. B., Zeyrek, C. T., Ağar, E., Güder, A., Özdemir, N., & Alpaslan, G. (2019). Structural, spectroscopic, radical scavenging activity, molecular docking and DFT studies of a synthesized Schiff base compound. Journal of Molecular Structure, 1179, 205–215. https://doi.org/10.1016/j.molstruc.2018.11.005
  • Gökce, H., Öztürk, N., Ceylan, Ü., Alpaslan, Y. B., & Alpaslan, G. (2016a). Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 163, 170–180. https://doi.org/10.1016/j.saa.2016.03.041
  • Gökce, H., Öztürk, N., Taşan, M., Alpaslan, Y. B., & Alpaslan, G. (2016b). Spectroscopic characterization and quantum chemical computations of the 5-(4-pyridyl)-1 H-1, 2, 4-triazole-3-thiol molecule. Spectroscopy Letters, 49(3), 167–179. https://doi.org/10.1080/00387010.2015.1114952
  • Güder, A. (2016). Influence of total anthocyanins from bitter melon (Momordica charantia Linn.) as antidiabetic and radical scavenging agents. Iranian Journal of Pharmaceutical Research, 15(1), 301–309.
  • Güder, A., Korkmaz, H., Gökce, H., Alpaslan, Y. B., & Alpaslan, G. (2014). Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 378–395. https://doi.org/10.1016/j.saa.2014.05.056
  • Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y., & Dege, N. (2018). Structural features of 7-methoxy-5-methyl-2-(pyridin-3-yl)-11, 12-dihydro-5,11-methano [1,2,4] triazolo [1,5-c][1,3,5] benzoxadiazocine: Experimental and theoretical (HF and DFT) studies, surface properties (MEP, Hirshfeld). Journal of Molecular Structure, 1168, 280–290.
  • Gür, M., Muğlu, H., Çavuş, M. S., Güder, A., Sayıner, H. S., & Kandemirli, F. (2017). Synthesis, characterization, quantum chemical calculations and evaluation of antioxidant properties of 1,3,4-thiadiazole derivatives including 2- and 3-methoxy cinnamic acids. Journal of Molecular Structure, 1134, 40–50. https://doi.org/10.1016/j.molstruc.2016.12.041
  • Güzeldemirci, N. U., & Küçükbasmacı, Ö. (2010). Synthesis and antimicrobial activity evaluation of new 1, 2, 4-triazoles and 1, 3, 4-thiadiazoles bearing imidazo [2, 1-b] thiazole moiety. European Journal of Medicinal Chemistry, 45(1), 63–68. https://doi.org/10.1016/j.ejmech.2009.09.024
  • Haasnoot, J. G. (2000). Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1, 2, 4-triazole derivatives as ligands. Coordination Chemistry Reviews, 200–202, 131–185. https://doi.org/10.1016/S0010-8545(00)00266-6
  • Hegde, H., Gaonkar, S. L., Badiger, N. P., & Shetty, N. S. (2020). Synthesis, antioxidant and anticancer activity of new quinoline-[1, 2, 4]-triazole hybrids. Rasayan Journal of Chemistry, 13(03), 1744–1749. https://doi.org/10.31788/RJC.2020.1335669
  • Jamroz, M. H. (2004). Vibrational Energy Distribution Analysis: VEDA 4 Program. Poland.
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … & Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Joshi, R., Pandey, N., Yadav, S. K., Tilak, R., Mishra, H., & Pokharia, S. (2018). Synthesis, spectroscopic characterization, DFT studies and antifungal activity of (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2, 4-dihydro-[1,2,4]triazole-3-thione . Journal of Molecular Structure, 1164, 386–403. https://doi.org/10.1016/j.molstruc.2018.03.081
  • Kahn, O., & Martinez, C. J. (1998). Spin-transition polymers: From molecular materials toward memory devices. Science, 279(5347), 44–48. https://doi.org/10.1126/science.279.5347.44
  • Kalinowski, H. O., Berger, S., & Braun, S. (1988). Carbon-13 NMR Spectroscopy., JohnWiley&Sons.
  • Kane, J. M., Dudley, M. W., Sorensen, S. M., & Miller, F. P. (1988). 2,4-Dihydro-3H-1,2,4-triazole-3-thiones as potential antidepressant agents. Journal of Medicinal Chemistry, 31(6), 1253–1258. https://doi.org/10.1021/jm00401a031
  • Karakurt, T., Dinçer, M., Çetin, A., & Şekerci, M. (2010). Molecular structure and vibrational bands and chemical shift assignments of 4-allyl-5-(2-hydroxyphenyl)-2, 4-dihydro-3H-1, 2, 4-triazole-3-thione by DFT and ab initio HF calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77(1), 189–198. https://doi.org/10.1016/j.saa.2010.05.006
  • Karczmarzyk, Z., Swatko-Ossor, M., Wysocki, W., Drozd, M., Ginalska, G., Pachuta-Stec, A., & Pitucha, M. (2020). New application of 1, 2, 4-triazole derivatives as antitubercular agents. Structure, in Vitro Screening and Docking Studies. Molecules, 25(24), 6033.
  • Kazeminejad, Z., Shiroudi, A., Pourshamsian, K., Hatamjafari, F., & Oliaey, A. R. (2019). Kinetics studies on the tautomeric reaction of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione in the gas phase: DFT and CBS-QB3 methods using transition state theory. Journal of the Chilean Chemical Society, 64(1), 4290–4297. https://doi.org/10.4067/s0717-97072019000104290
  • Khan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A., Uddin, R., Ul-Haq, Z., Khan, A., Ali, S., & Choudhary, M. I. (2010). Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. European Journal of Medicinal Chemistry, 45(11), 5200–5207. https://doi.org/10.1016/j.ejmech.2010.08.034
  • Khan, S., Fakhar, Z., Hussain, A., Ahmad, A., Jairajpuri, D. S., Alajmi, M. F., & Hassan, M. I. (2020). Structure-based identification of potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1848634.
  • Klingele, M. H., & Brooker, S. (2003). The coordination chemistry of 4-substituted 3, 5-di (2-pyridyl)-4H-1, 2, 4-triazoles and related ligands. Coordination Chemistry Reviews, 241(1/2), 119–132. https://doi.org/10.1016/S0010-8545(03)00049-3
  • Koksal, E., Bursal, E., Dikici, E., Tozoglu, F., & Gulcin, I. (2011). Antioxidant activity of Melissa officinalis leaves. Journal of Medicinal Plants Research, 5(2), 217–222.
  • Kumar, V. S., Mary, Y. S., Mary, Y. S., Serdaroğlu, G., Rad, A. S., Roxy, M. S., Manjula, P. S., & Sarojini, B. K. (2021). Conformational analysis and DFT investigations of two triazole derivatives and its halogenated substitution by using spectroscopy, AIM and Molecular docking. Chemical Data Collections, 31, 100625. https://doi.org/10.1016/j.cdc.2020.100625
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Li, C., Liu, J. C., Li, Y. R., Gou, C., Zhang, M. L., Liu, H. Y., Li, X. Z., Zheng, C. J., & Piao, H. R. (2015). Synthesis and antimicrobial evaluation of 5-aryl-1,2,4-triazole-3-thione derivatives containing a rhodanine moiety. Bioorganic & Medicinal Chemistry Letters, 25(15), 3052–3056. https://doi.org/10.1016/j.bmcl.2015.04.081
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Mazzini, S., Musso, L., Dallavalle, S., & Artali, R. (2020). Putative SARS-CoV-2 Mpro inhibitors from an in-house library of natural and nature-inspired products: A virtual screening and molecular docking study. Molecules, 25(16), 3745. https://doi.org/10.3390/molecules25163745
  • Mohammad, T., Shamsi, A., Anwar, S., Umair, M., Hussain, A., Rehman, M. T., AlAjmi, M. F., Islam, A., & Hassan, M. I. (2020). Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Research, 288, 198102 https://doi.org/10.1016/j.virusres.2020.198102
  • Molinspiration Cheminformatics. Retrieved November 10, 2020, from https://www.molinspiration.com/.
  • Molsoft. Retrieved November 15, 2020, from https://molsoft.com/index.html ().
  • Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Muhammad Atif, S., Hariprasad, G., Mustafa Hasan, G., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis, 1866(10), 165878 https://doi.org/10.1016/j.bbadis.2020.165878
  • O'boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). Cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29(5), 839–845. https://doi.org/10.1002/jcc.20823
  • Özdemir, N., & Türkpençe, D. (2013). Theoretical investigation of thione-thiol tautomerism, intermolecular double proton transfer reaction and hydrogen bonding interactions in 4-ethyl-5-(2-hydroxyphenyl)-2H-1, 2, 4-triazole-3 (4H)-thione. Computational and Theoretical Chemistry, 1025, 35–45. https://doi.org/10.1016/j.comptc.2013.10.001
  • Öztürk, N. (2019). Crystal structure, spectroscopic and electronic features of 6-(Chloromethyl) uracil. Journal of Molecular Structure, 1193, 468–476. https://doi.org/10.1016/j.molstruc.2019.05.071
  • Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2009). Introduction to spectroscopy; Brooks/Cole, Cengage Learning.
  • Pihlaja, K. & Kleinpeter E. (Eds.) (1994). Carbon-13 Chemical shifts in structural and stereochemical analysis. VCH Publishers.
  • Plech, T., Kaproń, B., Luszczki, J. J., Paneth, A., Siwek, A., Kołaczkowski, M., Żołnierek, M., & Nowak, G. (2014). Studies on the anticonvulsant activity of 4-alkyl-1,2,4-triazole-3-thiones and their effect on GABAergic system. Eur J Med Chem, 86, 690–699. https://doi.org/10.1016/j.ejmech.2014.09.034
  • Potts, K. T. (1961). The chemistry of 1, 2, 4-triazoles. Chemical Reviews, 61(2), 87–127. https://doi.org/10.1021/cr60210a001
  • PreADMET. Retrieved November 15, 2020, from https://preadmet.bmdrc.kr/ (.
  • Raouf, H., Beyramabadi, S. A., Allameh, S., & Morsali, A. (2019). Synthesis, experimental and theoretical characterizations of a 1, 2, 4-triazole Schiff base and its nickel (II) complex. Journal of Molecular Structure, 1179, 779–786. https://doi.org/10.1016/j.molstruc.2018.11.073
  • RCSB Protein Data Bank (PDB), 2020. Retrieved November 15, 2020, from http://www.rcsb.org.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3
  • Sheena Mary, Y., Shyma Mary, Y., Armaković, S., Armaković, S. J., & Narayana, B. (2020). Understanding reactivity of a triazole derivative and its interaction with graphene and doped/undoped-coronene—a DFT study. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1837677.
  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Cryst, A64, 112–122.
  • Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Cryst, C71, 3–8.
  • Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectroscopic identification of organic compound (7th ed.). John Wiley & Sons.
  • Sonawane, A. D., Rode, N. D., Nawale, L., Joshi, R. R., Joshi, R. A., Likhite, A. P., & Sarkar, D. (2017). Synthesis and biological evaluation of 1,2,4-triazole-3-thione and 1,3,4-oxadiazole-2-thione as antimycobacterial agents. Chemical Biology & Drug Design, 90(2), 200–209. https://doi.org/10.1111/cbdd.12939
  • Stuart, B. H. (2004). Infrared spectroscopy: Fundamentals and applications., JohnWilley & Sons.
  • Systèmes, D. (2020). BIOVIA, discovery studio visualizer, release. 2019. Dassault Systèmes.
  • Temel, E., Alaşalvar, C., Gökçe, H., Güder, A., Albayrak, Ç., Alpaslan, Y. B., Alpaslan, G., & Dilek, N. (2015). DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino) methyl] phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 534–546. https://doi.org/10.1016/j.saa.2014.09.067
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wade, L. G. Jr., (2006). Organic Chemistry., Pearson Prentice-Hall.
  • Zamani, K., Faghihi, K., Tofighi, T., & Shariatzadeh, M. R. (2004). Synthesis and antimicrobial activity of some pyridyl and naphthyl substituted 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives. Turkish Journal of Chemistry, 28(1), 95–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.