381
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Bioinformatics analysis of extracellular subtilisin E from Bacillus subtilis

, &
Pages 7183-7190 | Received 15 May 2020, Accepted 20 Feb 2021, Published online: 04 Mar 2021

References

  • Abe, S., Yasumura, A., & Tanaka, T. (2009). Regulation of Bacillus subtilis aprE expression by glnA through inhibition of scoC and sigma(D)-dependent degR expression. Journal of Bacteriology, 191(9), 3050–3058. https://doi.org/10.1128/JB.00049-09
  • Ahmadpour, F., & Yakhchali, B. (2017). Development of an asporogenic Bacillus cereus strain to improve keratinase production in exponential phase by switching sigmaH on and sigmaF off. FEMS Microbiology Letters, 364(24). https://doi.org/10.1093/femsle/fnx216
  • Almog, O., Gonzalez, A., Klein, D., Greenblatt, H. M., Braun, S., & Shoham, G. (2003). The 0.93A crystal structure of sphericase: A calcium-loaded serine protease from Bacillus sphaericus. Journal of Molecular Biology, 332(5), 1071–1082. https://doi.org/10.1016/j.jmb.2003.07.011
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, 42(Web Server issue), W252–8. https://doi.org/10.1093/nar/gku340
  • Bouacem, K., Bouanane-Darenfed, A., Laribi-Habchi, H., Elhoul, M. B., Hmida-Sayari, A., Hacene, H., Ollivier, B., Fardeau, M.-L., Jaouadi, B., & Bejar, S. (2015). Biochemical characterization of a detergent-stable serine alkaline protease from Caldicoprobacter guelmensis. International Journal of Biological Macromolecules, 81, 299–307. https://doi.org/10.1016/j.ijbiomac.2015.08.011
  • Chittoor, J. T., Balaji, L., & Jayaraman, G. (2016). Optimization of parameters that affect the activity of the alkaline protease from halotolerant bacterium, Bacillus acquimaris VITP4, by the application of response surface methodology and evaluation of the storage stability of the enzyme. Iranian Journal of Biotechnology, 14(1), 23–32. https://doi.org/10.15171/ijb.1269
  • Contesini, F. J., Melo, R. R., & Sato, H. H. (2017). An overview of Bacillus proteases: From production to application. Critical Reviews in Biotechnology, 38(3), 321–334. https://doi.org/10.1080/07388551.2017.1354354 
  • de Souza, P. M., Bittencourt, M. L. d. A., Caprara, C. C., de Freitas, M., de Almeida, R. P. C., Silveira, D., Fonseca, Y. M., Ferreira Filho, E. X., Pessoa Junior, A., & Magalhães, P. O. (2015). A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46(2), 337–346. https://doi.org/10.1590/S1517-838246220140359
  • Degering, C., Eggert, T., Puls, M., Bongaerts, J., Evers, S., Maurer, K.-H., & Jaeger, K.-E. (2010). Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Applied and Environmental Microbiology, 76(19), 6370–6376. https://doi.org/10.1128/AEM.01146-10
  • Ekici, O. D., Paetzel, M., & Dalbey, R. E. (2008). Unconventional serine proteases: Variations on the catalytic Ser/His/Asp triad configuration. Protein Science, 17(12), 2023–2037. https://doi.org/10.1110/ps.035436.108
  • Fakhfakh, N., Kanoun, S., Manni, L., & Nasri, M. (2009). Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather-degrading Bacillus licheniformis RPk. Canadian Journal of Microbiology, 55(4), 427–436. https://doi.org/10.1139/W08-143
  • Glez-Pena, D., Gomez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F., & Posada, D. (2010). ALTER: Program-oriented conversion of DNA and protein alignments. Nucleic Acids Res, 38(Web Server issue), W14–8. https://doi.org/10.1093/nar/gkq321
  • Goncalves, R. N., Gozzini Barbosa, S. D., & da, S.-L R. (2016). Proteases from Canavalia ensiformis: Active and thermostable enzymes with potential of application in biotechnology. Biotechnology Research International, 2016, 1–11. https://doi.org/10.1155/2016/3427098
  • Hertel, R., Meyerjurgens, S., Voigt, B., Liesegang, H., & Volland, S. (2017). Small RNA mediated repression of subtilisin production in Bacillus licheniformis. Scientific Reports, 7(1), 5699. https://doi.org/10.1038/s41598-017-05628-y
  • Hirata, A., Hori, Y., Koga, Y., Okada, J., Sakudo, A., Ikuta, K., Kanaya, S., & Takano, K. (2013). Enzymatic activity of a subtilisin homolog, Tk-SP, from Thermococcus kodakarensis in detergents and its ability to degrade the abnormal prion protein. BMC Biotechnology, 13, 19. https://doi.org/10.1186/1472-6750-13-19
  • Jain, S. C., Shinde, U., Li, Y., Inouye, M., & Berman, H. M. (1998). The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 A resolution. Journal of Molecular Biology, 284(1), 137–144. https://doi.org/10.1006/jmbi.1998.2161
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Küppers, T., Steffen, V., Hellmuth, H., O’Connell, T., Bongaerts, J., Maurer, K.-H., & Wiechert, W. (2014). Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer. Microbial Cell Factories, 13(1), 46. https://doi.org/10.1186/1475-2859-13-46
  • Laimer, J., Hofer, H., Fritz, M., Wegenkittl, S., & Lackner, P. (2015). MAESTRO-multi agent stability prediction upon point mutations. BMC Bioinformatics, 16, 116. https://doi.org/10.1186/s12859-015-0548-6
  • Levisohn, S., & Aronson, A. I. (1967). Regulation of extracellular protease production in Bacillus cereus. Journal of Bacteriology, 93(3), 1023–1030. https://doi.org/10.1128/JB.93.3.1023-1030.1967
  • Misirli, G., Hallinan, J., Rottger, R., Baumbach, J., & Wipat, A. (2014). BacillusRegNet: A transcriptional regulation database and analysis platform for Bacillus species. Journal of Integrative Bioinformatics, 11(2), 244. https://doi.org/10.2390/biecoll-jib-2014-244
  • Nilegaonkar, S. S., Zambare, V. P., Kanekar, P. P., Dhakephalkar, P. K., & Sarnaik, S. S. (2007). Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresource Technology, 98(6), 1238–1245. https://doi.org/10.1016/j.biortech.2006.05.003
  • Özçelik, B., Aytar, P., Gedikli, S., Yardımcı, E., Çalışkan, F., & Çabuk, A. (2014). Production of an alkaline protease using Bacillus pumilus D3 without inactivation by SDS, its characterization and purification. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(3), 388–396. https://doi.org/10.3109/14756366.2013.788503
  • Paetzel, M., Dalbey, R. E., & Strynadka, N. C. (1998). Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature, 396(6707), 186–190. https://doi.org/10.1038/24196
  • Roche, D. B., Tetchner, S. J., & McGuffin, L. J. (2011). FunFOLD: An improved automated method for the prediction of ligand binding residues using 3D models of proteins. BMC Bioinformatics, 12, 160. https://doi.org/10.1186/1471-2105-12-160
  • Romualdi, A., Felder, M., Rose, D., Gausmann, U., Schilhabel, M., Glöckner, G., Platzer, M., & Sühnel, J. (2007). GenColors: Annotation and comparative genomics of prokaryotes made easy. Methods in Molecular Biology (Clifton, N.J.), 395, 75–96.
  • Sehnal, D., Deshpande, M., Vařeková, R. S., Mir, S., Berka, K., Midlik, A., Pravda, L., Velankar, S., & Koča, J. (2017). LiteMol suite: Interactive web-based visualization of large-scale macromolecular structure data. Nature Methods, 14(12), 1121–1122. https://doi.org/10.1038/nmeth.4499
  • Song, J., Tan, H., Perry, A. J., Akutsu, T., Webb, G. I., Whisstock, J. C., & Pike, R. N. (2012). PROSPER: An integrated feature-based tool for predicting protease substrate cleavage sites. PLoS One, 7(11), e50300. https://doi.org/10.1371/journal.pone.0050300
  • Takagi, H., Morinaga, Y., Ikemura, H., & Inouye, M. (1988). Mutant subtilisin E with enhanced protease activity obtained by site-directed mutagenesis. The Journal of Biological Chemistry, 263(36), 19592–19596.
  • Takagi, H., Takahashi, T., Momose, H., Inouye, M., Maeda, Y., Matsuzawa, H., & Ohta, T. (1990). Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. The Journal of Biological Chemistry, 265(12), 6874–6878.
  • Tjalsma, H., Stover, A. G., Driks, A., Venema, G., Bron, S., & van Dijl, J. M. (2000). Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis. The Journal of Biological Chemistry, 275(33), 25102–25108. https://doi.org/10.1074/jbc.M002676200
  • UniProt, C. (2010). The universal protein resource (UniProt) in 2010. Nucleic Acids Research, 38(Database issue), D142–8.
  • Vojcic, L., Pitzler, C., Korfer, G., Jakob, F., Ronny, M., & Maurer, K. H. (2015). Advances in protease engineering for laundry detergents. New Biotechnology, 32(6), 629–634. https://doi.org/10.1016/j.nbt.2014.12.010
  • Wang, X. C., Zhao, H. Y., Liu, G., Cheng, X. J., & Feng, H. (2016). Improving production of extracellular proteases by random mutagenesis and biochemical characterization of a serine protease in Bacillus subtilis S1-4. Genetics and Molecular Research, 15(2), gmr7831.
  • Wang, H. Y., Liu, D. M., Liu, Y., Cheng, C. F., Ma, Q. Y., Huang, Q., & Zhang, Y. Z. (2007). Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Letters in Applied Microbiology, 44(1), 1–6. https://doi.org/10.1111/j.1472-765X.2006.02039.x
  • Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England), 25(9), 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  • Zolfaghari Emameh, R., Barker, H. R., Hytonen, V. P., & Parkkila, S. (2018). Involvement of beta-carbonic anhydrase genes in bacterial genomic islands and their horizontal transfer to protists. Applied and Environmental Microbiology, 84(15), e00771-18. https://doi.org/10.1128/AEM.00771-18
  • Zolfaghari Emameh, R., Barker, H., Tolvanen, M. E., Ortutay, C., & Parkkila, S. (2014). Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasites & Vectors, 7, 38. https://doi.org/10.1186/1756-3305-7-38
  • Zolfaghari Emameh, R., Kuuslahti, M., Nosrati, H., Lohi, H., & Parkkila, S. (2020). Assessment of databases to determine the validity of β- and γ-carbonic anhydrase sequences from vertebrates. BMC Genomics, 21(1), 352. https://doi.org/10.1186/s12864-020-6762-2
  • Zolfaghari, E. R., Barker, H. R., Tolvanen, M. E., Parkkila, S., & Hytonen, V. P. (2016). Horizontal transfer of beta-carbonic anhydrase genes from prokaryotes to protozoans, insects, and nematodes. Parasit Vectors, 9, 152. https://doi.org/10.1186/s13071-016-1415-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.