2,778
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Evolution and identification of DREB transcription factors in the wheat genome: modeling, docking and simulation of DREB proteins associated with salt stress

, &
Pages 7191-7204 | Received 14 Jun 2020, Accepted 20 Feb 2021, Published online: 23 Mar 2021

References

  • Allen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., & Suzuki, M. (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal, 17(18), 5484–5496.https://doi.org/10.1093/emboj/17.18.5484
  • Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C. J., Choulet, F., Distelfeld, A., & Poland, J. J. S. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.
  • Apse, M. P., & Blumwald, E. (2002). Engineering salt tolerance in plants. Current Opinion in Biotechnology, 13(2), 146–150. https://doi.org/10.1016/s0958-1669(02)00298-7
  • Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84–93.https://doi.org/10.1016/j.biotechadv.2008.09.003
  • Attia, H., Karray, N., Msilini, N., & Lachaâl, M. J. B. P. (2011). Effect of salt stress on gene expression of superoxide dismutases and copper chaperone in Arabidopsis thaliana. Biologia Plantarum, 55(1), 159–163. https://doi.org/10.1007/s10535-011-0022-x
  • Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The MEME Suite. Nucleic Acids Research, 43(W1), W39–49.https://doi.org/10.1093/nar/gkv416
  • Bernard, B., Thorsson, V., Rovira, H., & Shmulevich, I. (2012). Increasing coverage of transcription factor position weight matrices through domain-level homology. PLoS One, 7(8), e42779 https://doi.org/10.1371/journal.pone.0042779
  • Bohnert, H. J. (2007). Abiotic Stress. eLS.
  • Buttner, M., & Singh, K. B. (1997). Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5961–5966. https://doi.org/10.1073/pnas.94.11.5961
  • Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity stress and salt tolerance. In Abiotic stress in plants-mechanisms and adaptations. IntechOpen.
  • Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. J Comput Chem, 26(16), 1668–1688.https://doi.org/10.1002/jcc.20290
  • Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of Sodium Transport in Durum Wheat. Plant Physiology, 137(3), 807–818.https://doi.org/10.1104/pp.104.057307
  • Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science. , 19(6), 371–379. https://doi.org/10.1016/j.tplants.2014.02.001
  • Dossa, K., Wei, X., Li, D., Fonceka, D., Zhang, Y., Wang, L., Yu, J., Boshou, L., Diouf, D., Cisse, N., & Zhang, X. (2016). Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biology, 16(1), 171 https://doi.org/10.1186/s12870-016-0859-4
  • Eddy, S. (2011). Accelerated profile HMM searches. PLoS Comput Biol, 7(10), e1002195 https://doi.org/10.1371/journal.pcbi.1002195
  • El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., & Smart, A. (2018). The Pfam protein families database in 2019.
  • Feng, C. Z., Chen, Y., Wang, C., Kong, Y. H., Wu, W. H., & Chen, Y. F. (2014). Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal: For Cell and Molecular Biology, 80(4), 654–668. https://doi.org/10.1111/tpj.12670
  • Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., & Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 12(3), 393–404. https://doi.org/10.1105/tpc.12.3.393
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry : PPB, 48(12), 909–930.https://doi.org/10.1016/j.plaphy.2010.08.016
  • Grant, C. E., Bailey, T. L., & Noble, W. S. (2011). FIMO: Scanning for occurrences of a given motif. Bioinformatics (Oxford, England), 27(7), 1017–1018.https://doi.org/10.1093/bioinformatics/btr064
  • Grattan, S., Zeng, L., Shannon, M., & Roberts, S. (2002). Rice is more sensitive to salinity than previously thought. California Agriculture, 56(6), 189–198. https://doi.org/10.3733/ca.v056n06p189
  • Guo, B., Wei, Y., Xu, R., Lin, S., Luan, H., Lv, C., Zhang, X., Song, X., & Xu, R. (2016). Genome-Wide Analysis of APETALA2/Ethylene-Responsive Factor (AP2/ERF) Gene Family in Barley (Hordeum vulgare L.). PLoS One, 11(9), e0161322 https://doi.org/10.1371/journal.pone.0161322
  • Hao, D., Ohme-Takagi, M., & Sarai, A. (1998). Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem, 273(41), 26857–26861. https://doi.org/10.1074/jbc.273.41.26857
  • Hao, D., Yamasaki, K., Sarai, A., & Ohme-Takagi, M. (2002). Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry, 41(13), 4202–4208. https://doi.org/10.1021/bi015979v
  • Hehl, R., & Bulow, L. (2014). AthaMap web tools for the analysis of transcriptional and posttranscriptional regulation of gene expression in Arabidopsis thaliana. Methods in Molecular Biology (Clifton, N.J.), 1158, 139–156.https://doi.org/10.1007/978-1-4939-0700-7_9
  • Huang, X., Zhang, Y., Jiao, B., Chen, G., Huang, S., Guo, F., Shen, Y., Huang, Z., & Zhao, B. (2012). Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis. Journal of Experimental Botany, 63(15), 5463–5473.https://doi.org/10.1093/jxb/ers198
  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. (2011). Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30(5), 435–458. https://doi.org/10.1080/07352689.2011.605739
  • Jofuku, K. D., den Boer, B. G., Van Montagu, M., & Okamuro, J. K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell, 6(9), 1211–1225. https://doi.org/10.1105/tpc.6.9.1211
  • Katoh, K., Rozewicki, J., & Yamada, K. D. (2017). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 4, 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J. A., van der Lee, R., Bessy, A., Cheneby, J., Kulkarni, S. R., Tan, G., Baranasic, D., Arenillas, D. J., Sandelin, A., Vandepoele, K., Lenhard, B., Ballester, B., Wasserman, W. W., Parcy, F., & Mathelier, A. (2018a). JASPAR 2018: Update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Research, 46(D1), D260–D266.https://doi.org/10.1093/nar/gkx1126
  • Khan, S. A., Li, M. Z., Wang, S. M., & Yin, H. J. (2018b). Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. International Journal of Molecular Sciences, 19(6), 1634. https://doi.org/10.3390/ijms19061634
  • Konda, A. K., Farmer, R., Soren, K. R., P, S. S., & Setti, A. (2018). Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea. Journal of Biomolecular Structure & Dynamics, 36(9), 2279–2291.https://doi.org/10.1080/07391102.2017.1349690
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Kurotani, K., Hayashi, K., Hatanaka, S., Toda, Y., Ogawa, D., Ichikawa, H., Ishimaru, Y., Tashita, R., Suzuki, T., Ueda, M., Hattori, T., & Takeda, S. (2015). Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant & Cell Physiology, 56(4), 779–789.https://doi.org/10.1093/pcp/pcv006
  • Li, W., & Godzik, A. J. B. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England), 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158
  • Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286–291.https://doi.org/10.1016/j.bbrc.2017.11.043
  • Liu, W., Wang, Y., & Gao, C. (2014). The ethylene response factor (ERF) genes from Tamarix hispida respond to salt, drought and ABA treatment. Trees, 28(2), 317–327. https://doi.org/10.1007/s00468-013-0950-5
  • Magnani, E., Sjolander, K., & Hake, S. (2004). From endonucleases to transcription factors: Evolution of the AP2 DNA binding domain in plants. The Plant Cell, 16(9), 2265–2277.https://doi.org/10.1105/tpc.104.023135
  • Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., & Oda, K. (2004). dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. The Plant Journal : For Cell and Molecular Biology, 37(5), 720–729. https://doi.org/10.1111/j.1365-313x.2003.01998.x
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713.https://doi.org/10.1021/acs.jctc.5b00255
  • Mathelier, A., Fornes, O., Arenillas, D. J., Chen, C. Y., Denay, G., Lee, J., Shi, W., Shyr, C., Tan, G., Worsley-Hunt, R., Zhang, A. W., Parcy, F., Lenhard, B., Sandelin, A., & Wasserman, W. W. (2016). JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 44(D1), D110–115. https://doi.org/10.1093/nar/gkv1176
  • Mukherjee, K., Pandey, D. M., & Vidyarthi, A. S. (2015). In silico characterization and analysis of RTBP1 and NgTRF1 protein through MD simulation and molecular docking - A comparative study. Interdisciplinary Sciences, Computational Life Sciences, 7, 275–286. https://doi.org/10.1007/s12539-014-0237-6
  • Nakano, T., Suzuki, K., Fujimura, T., & Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 140(2), 411–432.https://doi.org/10.1104/pp.105.073783
  • Ohme-Takagi, M., & Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell, 7(2), 173–182.https://doi.org/10.1105/tpc.7.2.173
  • Okamuro, J. K., Caster, B., Villarroel, R., Van Montagu, M., & Jofuku, K. D. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 7076–7081. https://doi.org/10.1073/pnas.94.13.7076
  • Omidbakhshfard, M. A., Omranian, N., Ahmadi, F. S., Nikoloski, Z., & Mueller-Roeber, B. (2012). Effect of salt stress on genes encoding translation-associated proteins in Arabidopsis thaliana. Plant Signaling & Behavior, 7(9), 1095–1102.https://doi.org/10.4161/psb.21218
  • Osorio, D., Rondón-Villarrea, P., & Torres, R. J. R. J. (2015). Peptides: a package for data mining of antimicrobial peptides. R Journal, 7, 4-14.
  • Pandey, B., Grover, A., & Sharma, P. (2018). Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics. , 19(1), 132. https://doi.org/10.1186/s12864-018-4506-3
  • Pandey, B., Sharma, P., Tyagi, C., Goyal, S., Grover, A., & Sharma, I. (2016). Structural modeling and molecular simulation analysis of HvAP2/EREBP from barley. Journal of Biomolecular Structure & Dynamics, 34(6), 1159–1175.https://doi.org/10.1080/07391102.2015.1073630
  • Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014). mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics (Oxford, England), 30(3), 335–342.https://doi.org/10.1093/bioinformatics/btt691
  • Pirrello, J., Prasad, B. C., Zhang, W., Chen, K., Mila, I., Zouine, M., Latche, A., Pech, J. C., Ohme-Takagi, M., Regad, F., & Bouzayen, M. (2012). Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biology, 12, 190 https://doi.org/10.1186/1471-2229-12-190
  • Pradeepkiran, J. A., Kumar, K. K., Kumar, Y. N., & Bhaskar, M. (2015). Modeling, molecular dynamics, and docking assessment of transcription factor rho: A potential drug target in Brucella melitensis 16M. Drug Des Devel Ther, 9, 1897–1912.https://doi.org/10.2147/DDDT.S77020
  • Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England), 26(6), 841–842.https://doi.org/10.1093/bioinformatics/btq033
  • Rashid, M., Guangyuan, H., Guangxiao, Y., Hussain, J., & Xu, Y. (2012). AP2/ERF Transcription Factor in Rice: Genome-Wide Canvas and Syntenic Relationships between Monocots and Eudicots. Evolutionary Bioinformatics Online, 8, 321–355.https://doi.org/10.4137/EBO.S9369
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation, 9(7), 3084–3095.https://doi.org/10.1021/ct400341p
  • Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 290(3), 998–1009.https://doi.org/10.1006/bbrc.2001.6299
  • Salomon‐Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Sharoni, A. M., Nuruzzaman, M., Satoh, K., Shimizu, T., Kondoh, H., Sasaya, T., Choi, I. R., Omura, T., & Kikuchi, S. (2011). Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant & Cell Physiology, 52(2), 344–360.https://doi.org/10.1093/pcp/pcq196
  • Shu, Y., Liu, Y., Zhang, J., Song, L., & Guo, C. (2015). Genome-Wide Analysis of the AP2/ERF Superfamily Genes and their Responses to Abiotic Stress in Medicago truncatula. Frontiers in Plant Science, 6, 1247 https://doi.org/10.3389/fpls.2015.01247
  • Si, J., Zhao, R., & Wu, R. (2015). An overview of the prediction of protein DNA-binding sites. International Journal of Molecular Sciences, 16(12), 5194–5215. https://doi.org/10.3390/ijms16035194
  • Singh, V., Singh, A. P., Bhadoria, J., Giri, J., Singh, J., T, V. V., & Sharma, P. C. (2018). Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma, 255(6), 1667–1681. https://doi.org/10.1007/s00709-018-1257-6
  • Stockinger, E. J., Gilmour, S. J., & Thomashow, M. F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America, 94(3), 1035–1040. https://doi.org/10.1073/pnas.94.3.1035
  • Sun, S., Yu, J. P., Chen, F., Zhao, T. J., Fang, X. H., Li, Y. Q., & Sui, S. F. (2008). TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J Biol Chem, 283(10), 6261–6271.https://doi.org/10.1074/jbc.M706800200
  • Tester, M., & Davenport, R. (2003). Na + tolerance and Na + transport in higher plants. Annals of Botany, 91(5), 503–527. https://doi.org/10.1093/aob/mcg058
  • Töpel, M., Zizka, A., Calió, M. F., Scharn, R., Silvestro, D., & Antonelli, A. (2017). SpeciesGeoCoder: Fast categorization of species occurrences for analyses of biodiversity, biogeography, ecology, and evolution. Systematic Biology, 66(2), 145–151. https://doi.org/10.1093/sysbio/syw064
  • van Dijk, M., & Bonvin, A. M. (2009). 3D-DART: A DNA structure modelling server. Nucleic Acids Research, 37(Web Server issue), W235–239.https://doi.org/10.1093/nar/gkp287
  • Vatansever, R., Uras, M. E., Sen, U., Ozyigit, I. I., & Filiz, E. (2017). Isolation of a transcription factor DREB1A gene from Phaseolus vulgaris and computational insights into its characterization: Protein modeling, docking and mutagenesis. Journal of Biomolecular Structure & Dynamics, 35(14), 3107–3118.https://doi.org/10.1080/07391102.2016.1243487
  • Vazquez-Hernandez, M., Romero, I., Escribano, M. I., Merodio, C., & Sanchez-Ballesta, M. T. (2017). Deciphering the Role of CBF/DREB Transcription Factors and Dehydrins in Maintaining the Quality of Table Grapes cv. Autumn Royal Treated with High CO2 Levels and Stored at 0 degrees C. Frontiers in Plant Science., 8, 1591. https://doi.org/10.3389/fpls.2017.01591
  • Wang, B., & Kennedy, M. A. (2014). Principal components analysis of protein sequence clusters. Journal of Structural and Functional Genomics, 15(1), 1–11.https://doi.org/10.1007/s10969-014-9173-2
  • Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics, 54, 5 6 1–5 6 37. https://doi.org/10.1002/cpbi.3
  • Wingender, E., Chen, X., Fricke, E., Geffers, R., Hehl, R., Liebich, I., Krull, M., Matys, V., Michael, H., Ohnhauser, R., Pruss, M., Schacherer, F., Thiele, S., & Urbach, S. (2001). The TRANSFAC system on gene expression regulation. Nucleic Acids Research, 29(1), 281–283. https://doi.org/10.1093/nar/29.1.281
  • Xie, X-l., Yin, X-r., & Chen, K-s. (2016). Roles of APETALA2/ethylene-response factors in regulation of fruit quality. Critical Reviews in Plant Sciences, 35(2), 120–130. https://doi.org/10.1080/07352689.2016.1213119
  • Xu, Z. S., Chen, M., Li, L. C., & Ma, Y. Z. (2011). Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology, 53(7), 570–585.https://doi.org/10.1111/j.1744-7909.2011.01062.x
  • Yamaguchi-Shinozaki, K., & Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 6(2), 251–264.https://doi.org/10.1105/tpc.6.2.251
  • Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017). HDOCK: A web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Research, 45(W1), W365–W373. https://doi.org/10.1093/nar/gkx407
  • Yousfi, S., Marquez, A. J., Betti, M., Araus, J. L., & Serret, M. D. (2016). Gene expression and physiological responses to salinity and water stress of contrasting durum wheat genotypes. Journal of Integrative Plant Biology, 58(1), 48–66.https://doi.org/10.1111/jipb.12359
  • Zhang, Z., & Li, X. (2018). Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Scientific Reports, 8(1), 15612 https://doi.org/10.1038/s41598-018-33744-w
  • Zhang, A-d., Hu, X., Kuang, S., Ge, H., Yin, X-r., & Chen, K-s. (2016). Isolation, classification and transcription profiles of the Ethylene Response Factors (ERFs) in ripening kiwifruit. Scientia Horticulturae, 199, 209–215. https://doi.org/10.1016/j.scienta.2015.12.055
  • Zhao, T., Liang, D., Wang, P., Liu, J., & Ma, F. (2012). Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Molecular genetics and genomics : MGG, 287(5), 423–436.https://doi.org/10.1007/s00438-012-0687-7
  • Zhou, J., Tang, X., & Martin, G. B. (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. The EMBO Journal, 16(11), 3207–3218.https://doi.org/10.1093/emboj/16.11.3207
  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66–71. https://doi.org/10.1016/s1360-1385(00)01838-0
  • Zhu, Q., Zou, J., Zhu, M., Liu, Z., Feng, P., Fan, G., Wang, W., & Liao, H. (2014). In silico analysis on structure and DNA binding mode of AtNAC1, a NAC transcription factor from Arabidopsis thaliana. Journal of Molecular Modeling, 20(3), 2117. https://doi.org/10.1007/s00894-014-2117-8
  • Zhuang, J., Chen, J. M., Yao, Q. H., Xiong, F., Sun, C. C., Zhou, X. R., Zhang, J., & Xiong, A. S. (2011). Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Molecular Biology Reports, 38(2), 745–753.https://doi.org/10.1007/s11033-010-0162-7