272
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

A comprehensive in silico and in vitro studies on quinizarin: a promising phytochemical derived from Rhizophora mucronata Lam

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 7218-7229 | Received 08 Dec 2020, Accepted 21 Feb 2021, Published online: 08 Mar 2021

References

  • Abdel-Aziz, S. M., Mouafi, F. E., Moustafa, Y. A., & Abdelwahed, N. A. M. (2016). Medicinal importance of mangrove plants. In: Garg N., Abdel-Aziz S., & Aeron A. (Eds.), Microbes in food and health (pp. 77–96). Springer.
  • Ahirwar, R. K. (2012). Utilization of medicinal plants by the Tribes of Bhatiya. District Shahdol, Madhyapradesh. International Journal of Science and Research, 3, 149–151.
  • Birkinshaw, R. W., Gong, J. N., Luo, C. S., Lio, D., White, C. A., Anderson, M. A., Blombery, P., Lessene, G., Majewski, I. J., Thijssen, R., Roberts, A. W., Huang, D. C. S., Colman, P. M., & Czabotar, P. E. (2019). Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nature Communications, 10(1), 2385 Jun 3 https://doi.org/10.1038/s41467-019-10363-1
  • Cheuk, D., Svard, M., Seaton, C., McArdle, P., & Rasmuson, A. C. (2015). Investigation into solid and solution properties of Quinizarin. CrystEngComm, 17(21), 3985–3997. https://doi.org/10.1039/C5CE00147A
  • Chien, S. C., Wu, Y. C., Chen, Z. W., & Yang, W. C. (2015). Naturally occurring Anthraquinones: Chemistry and therapeutic potential in autoimmune diabetes. Evidence-based Complementary and Alternative Medicine : eCAM, 2015, 357357. https://doi.org/10.1155/2015/357357
  • Dave, H., & Ledwani, L. (2012). A review on anthaquinones isolated from Cassia species and their application. Indian Journal of Natural Products and Resources, 3, 291–319.
  • Dzoyem, J. P., Melong, R., Tsamo, A. T., Maffo, T., Kapche, D. G. W. F., Ngadjui, B. T., McGaw, L. J., & Eloff, J. N. (2017). Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Revista Brasileira de Farmacognosia, 27(2), 251–253. https://doi.org/10.1016/j.bjp.2016.08.011
  • Gaffar, M. U., Morshed, M. A., Uddin, A., Roy, S., & Hannan, J. M. A. (2011). Study the efficacy of R. mucronata Leaves for diabetes therapy in long Evans rats. International Journal of Biomolecules and Biomedicines, 1, 20–26.
  • Güneş, E., Durak, Y., & Uysal, A. (2019). Elucidation of biological properties of some commercial anthraquinones: Mutagenic/antimutagenic and antimicrobial activity approaches. Journal of Research in Pharmacy, 23(2), 208–216. https://doi.org/10.12991/jrp.2019.126
  • Habib, M. D. A., Khatun, F., Ruma, M. K., Chowdhury, A. S. M. H. K., Silve, A. R., Rahman, A., & Hossain, M. I. (2018). A Review on phytochemical constituents of pharmaceutically important mangrove plants, their medicinal uses and pharmacological activities. Vedic Research International Phytomedicine, 6(1), 1–9. https://doi.org/10.14259/pm.v6i1.220
  • Hu, X., Cao, Y., Yin, X., Zhu, L., Chen, Y., Wang, W., & Hu, J. (2019). Design and synthesis of various quinizarin derivatives as potential anticancer agents in acute T lymphoblastic leukemia. Bioorganic & Medicinal Chemistry, 27(7), 1362–1369. https://doi.org/10.1016/j.bmc.2019.02.041
  • Kalt, W., Forney, C. F., Martin, A., & Prior, R. L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47(11), 4638–4644. https://doi.org/10.1021/jf990266t
  • Kaur, H., Singh, J., & Narasimhan, B. (2019). Antimicrobial, antioxidant and cytotoxic evaluation of diazenyl chalcones along with insights to mechanism of interaction by molecular docking studies. BMC Chemistry, 13(87), 1-19. https://doi.org/10.1186/s13065-019-0596-5
  • Kuete, V., Donfack, A. R., Mbaveng, A. T., Zeino, M., Tane, P., & Efferth, T. (2015). Cytotoxicity of anthraquinones from the roots of Pentas schimperi towards multi-factorial drug-resistant cancer cells. Investigational New Drugs, 33(4), 861–869. https://doi.org/10.1007/s10637-015-0268-9
  • Laith, A. A., Mazlan, A. G., Effendy, A. W., Ambak, M. A., Nurhafizah, W. W. I., Alia, A. S., Jabar, A., & Najiah, M. (2017). Effect of Excoecaria agallocha on non-specific immune responses and disease resistance of Oreochromis niloticus against Streptococcus agalactiae. Research in Veterinary Science, 112, 192–200. https://doi.org/10.1016/j.rvsc.2017.04.020
  • Lalitha, P., Veena, V., Vidhyapriya, P., Lakshmi, P., Krishna, R., & Sakthivel, N. (2016). Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30. Apoptosis : An International Journal on Programmed Cell Death, 21(5), 566–577. https://doi.org/10.1007/s10495-016-1221-x
  • Lee, H. S. (2003). Inhibitory Effects of Quinizarin Isolated from Cassia tora Seeds Against Human Intestinal Bacteria and Aflatoxin B1 Biotransformation. Journal of Micorbiology and Biotechnology, 13, 529–536.
  • Liu, Y., Liang, Y., Jiang, J., Qin, Q., Wang, L., & Liu, X. (2019). Design, synthesis and biological evaluation of 1,4-dihydroxyanthraquinone derivatives as anticancer agents. Bioorganic & Medicinal Chemistry Letters, 29(9), 1120–1126. https://doi.org/10.1016/j.bmcl.2019.02.026
  • Li, Q., Cheng, L., Shen, K., Li, J. H., Cheng, H., & Ma, Y. (2019). Efficacy and safety of Bcl-2 inhibitor venetoclax in hematological malignancy: A systematic review and meta-analysis of Clinical Trials. Frontiers of Pharmacology, 10(697), 1-12. https://doi.org/10.3389/fphar.2019.00697
  • Mahmiah, G., Aminah, N. S., & Tanjung, M. (2018). Potential of methanol extract from the stem bark of mangrove Rhizophora mucronata against bacteria Escherichia coli and Aeromonas hydrophylla. IOP Conference SeriesEarth and Environmental Science, 162, 012030. https://doi.org/10.1088/1755-1315/162/1/012030
  • Mangrio, A. M., Rafiq, M., Naqvi, S. H. A., Junejo, S. A., Mangrio, S. M., & Rind, N. A. (2016). Evaluation of phytochemical constituents and Antibacterial potential of Avicennia marina and Rhizophora mucronata from Indus Delta of Pakistan. Pakisthan Journal of Biotechnology, 13, 259–265.
  • Moushumi Priya, A., & Jayachandran, S. (2012). Induction of apoptosis and cell cycle arrest by Bis (2-ethylhexyl) phthalate produced by marine Bacillus pumilus MB 40. Chemico-Biological Interactions, 195(2), 133–143. https://doi.org/10.1016/j.cbi.2011.11.005
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Parthiban, A., & Makam, P. (2020). Dual active 1, 4-dihydropyridine derivatives: Design, green synthesis and in vitro anti-cancer and anti-oxidant studies. Bioorganic Chemistry, 105(104379).
  • Parthiban, A., Muthukumaran, J., Manhas, A., Srivastava, K., Krishna, R., & Rao, H. S. P. (2015). Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates. Bioorganic & Medicinal Chemistry Letters, 25(20), 4657–4663. https://doi.org/10.1016/j.bmcl.2015.08.030
  • Rao, H. S. P., & Parthiban, A. (2014). One-pot pseudo three-component reaction of nitroketene-N,S-acetals and aldehydes for synthesis of highly functionalized hexa-substituted 1,4-dihydropyridines. Organic & Biomolecular Chemistry, 12(32), 6223–6238. https://doi.org/10.1039/c4ob00628c
  • Parthiban, A., Muthukumaran, J., Moushumi Priya, A., Jayachandran, S., Krishna, R., & Surya Prakash Rao, H. (2014). Design, synthesis, molecular docking, and biological evaluation of N-methyl-3-nitro-4-(nitromethyl)-4H-chromen-2-amine derivatives as potential anti-cancer agents. Medicinal Chemistry Research, 23(2), 642–659. https://doi.org/10.1007/s00044-013-0642-0
  • Parthiban, A., Kumaravel, M., Muthukumaran, J., Rukkumani, R., Krishna, R., & Surya Prakash Rao, H. (2015). Design, synthesis, in vitro and in silico anti-cancer activity of 4H-chromenes with C4-active methine groups. Medicinal Chemistry Research, 24(3), 1226–1240. https://doi.org/10.1007/s00044-014-1190-y
  • Parthiban, A., Kumaravel, M., Muthukumaran, J., Rukkumani, R., Krishna, R., & Rao, H. S. P. (2016). Synthesis, in vitro and in silico anti-proliferative activity of 4-aryl-4H-chromene derivatives. Medicinal Chemistry Research, 25(7), 1308–1315. https://doi.org/10.1007/s00044-016-1569-z
  • Prakash, L. M., & Sivakumar, T. (2013). A study on antibacterial activity of mangrove plant Excoecaria agallocha. International Journal of Current Microbiology and Applied Science, 2, 260–262.
  • Ramos, J., Muthukumaran, J., Freire, F., Paquete-Ferreira, J., Otrelo-Cardoso, A. R., Svergun, D., Panjkovich, A., & Santos-Silva, T. (2019). Shedding light on the interaction of human anti-apoptotic Bcl-2 protein with ligands through biophysical and in silico studies. International Journal of Molecular Sciences, 20(4), 860. https://doi.org/10.3390/ijms20040860
  • Ravikumar, S., Gnanadesigan, M., Suganthi, P., & Ramalakshmi, A. (2010). Antibacterial potential of chosen mangrove plants against isolated urinary tract infections bacterial pathogens. International Journal of Medicine and Medical Science, 2, 94–99.
  • Saad, S., Taher, M., Susanti, D., Qaralleh, H., & Rahim, N. A. (2011). Antimicrobial activity of mangrove plant (Lumnitzera littorea). Asian Pacific Journal of Tropical Medicine, 4(7), 523–525. https://doi.org/10.1016/S1995-7645(11)60138-7
  • Sachithanandam, V., Lalitha, P., Parthiban, A., Mageswaran, T., Manmadhan, K., & Sridhar, R. (2019). A review on antidiabetic properties of Indian mangrove plants with reference to Island ecosystem. Evidence-Based Complementary and Alternative Medicine, 20192019, 1–21. https://doi.org/10.1155/2019/4305148
  • Sachithanandam, V., Parthiban, A., Lalitha, P., Muthukumaran, J., Jain, M., Elumalai, D., Jayabal, K., Sridhar, R., Ramachandran, P., & Ramachandran, R. (2020). Biological evaluation of gallic acid and quercetin derived from Ceriops tagal: Insights from extensive in vitro and in silico studies. Journal of Biomolecular Structure and Dynamics, 2020, 1–13.
  • Sadeer, N. B., Rocchetti, G., Senizza, B., Montesano, D., Zengin, G., Uysal, A., Jeewon, R., Lucini, L., & Mahomoodal, M. F. (2019). Untargeted metabolomic profiling, multivariate analysis and biological evaluation of the true mangrove. (Rhizophora Mucronata Lam.). Antioxidants, 8, 1–20.
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sahoo, G., Mulla, N. S. S., Ansari, Z. A., & Mohandass, C. (2012). Antibacterial Activity of Mangrove Leaf extracts against Human Pathogens. Indian Journal of Pharmaceutical Sciences, 74(4), 348–351. https://doi.org/10.4103/0250-474X.107068
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Uysal, A., Gunes, E., & Durak, Y. (2019). Elucidation of biological properties of some commercial anthraquinones: mutagenic/antimutagenic and antimicrobial activity approaches. Journal of Research in Pharmacy, 23, 208–216.
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wariso, B. A., & Ebong, O. (1996). Antimicrobial activity of Kalanchoe pinnaata (Ntiele. Lam) pers. W. Afr. J. Pharm. Drug Res, 12, 65–68.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Zengin, G., Degirmenci, N. S., Alpsoy, L., & Aktumsek, A. (2016). Evaluation of antioxi-dant, enzyme inhibition, and cytotoxic activity of three anthraquinones (alizarin, purpurin, and quinizarin). Human & Experimental Toxicology, 35(5), 544–553. https://doi.org/10.1177/0960327115595687
  • Zheng, C. J., Yoo, J. S., Lee, T. G., Cho, H. Y., Kim, Y. H., & Kim, W. G. (2005). Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters, 579(23), 5157–5162. https://doi.org/10.1016/j.febslet.2005.08.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.