276
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Structural insight into the binding interactions of NTPs and nucleotide analogues to RNA dependent RNA polymerase of SARS-CoV-2

, , , &
Pages 7230-7244 | Received 31 Dec 2020, Accepted 21 Feb 2021, Published online: 08 Mar 2021

References

  • Aftab, S. O., Ghouri, M. Z., Masood, M. U., Haider, Z., Khan, Z., Ahmad, A., & Munawar, N. (2020). Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. Journal of Translational Medicine, 18(1), 275. https://doi.org/10.1186/s12967-020-02439-0
  • Allen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, D. T., Lang, P. T., Case, D. A., Kuntz, I. D., & Rizzo, R. C. (2015). DOCK 6: Impact of new features and current docking performance. Journal of Computational Chemistry, 36(15), 1132–1156. https://doi.org/10.1002/jcc.23905
  • Appleby, T. C., Perry, J. K., Murakami, E., Barauskas, O., Feng, J., Cho, A., Fox, D., III, Wetmore, D. R., McGrath, M. E., Ray, A. S., Sofia, M. J., Swaminathan, S., & Edwards, T. E. (2015). Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science (New York, N.Y.), 347(6223), 771–775. https://doi.org/10.1126/science.1259210
  • Balasubramaniam, M., & Reis, R. J. S. (2020). Computational target-based drug repurposing of elbasvir, an antiviral drug predicted to bind multiple SARS-CoV-2 proteins. ChemRxiv [Preprint]. https://doi.org/10.26434/chemrxiv.12084822
  • Cattaneo, D., Capetti, A., & Rizzardini, G. (2019). Drug-drug interactions of a two-drug regimen of dolutegravir and lamivudine for HIV treatment. Expert Opinion on Drug Metabolism & Toxicology, 15(3), 245–252. https://doi.org/10.1080/17425255.2019.1577821
  • Chien, M., Anderson, T. K., Jockusch, S., Tao, C., Li, X., Kumar, S., Russo, J. J., Kirchdoerfer, R. N., & Ju, J. (2020). Nucleotide analogues as Inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. Journal of Proteome Research, 19(11), 4690-4697. https://doi.org/10.1021/acs.jproteome.0c00392
  • Chodera, J. D., & Noé, F. (2014). Markov state models of biomolecular conformational dynamics. Current Opinion in Structural Biology, 25,135-144. https://doi.org/10.1016/j.sbi.2014.04.002
  • Chodera, J. D., Singhal, N., Pande, V. S., Dill, K. A., & Swope, W. C. (2007). Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. The Journal of Chemical Physics, 126(15), 155101–17461665. https://doi.org/10.1063/1.2714538
  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheatham III, T. E., Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Lin, C., Luchko, T., … Kollman, P. A. (2016). AMBER 2016. University of California.
  • De Clercq E. (2019). New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chemistry: An Asian Journal, 14(22), 3962-3968. https://doi.org/10.1002/asia.201900841
  • Delang, L., Abdelnabi, R., & Neyts, J. (2018). Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Research, 153, 85–94. https://doi.org/10.1016/j.antiviral.2018.03.003
  • Elfiky, A. A. (2020a). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253, 117592. https://doi.org/10.1016/j.lfs.2020.117592
  • Elfiky, A. A. (2020b). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. Journal of Biomolecular Structure and Dynamics, 1-9. https://doi.org/10.1080/07391102.2020.1761882.
  • Furuta, Y., Komeno, T., & Nakamura, T. (2017). Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy, Series B, 93(7), 449–463. https://doi.org/10.2183/pjab.93.027
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., Yang, X., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (New York, N.Y.), 368(6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Gaurav, A., & Al-Nema, M. (2019). Polymerases of coronaviruses: structure, function, and inhibitors. In Viral polymerases (pp. 271-300). Academic Press.
  • Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, M. (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. The Journal of Biological Chemistry, 295(20), 6785–6797. https://doi.org/10.1074/jbc.RA120.013679
  • Graham, R. L., Donaldson, E. F., & Baric, R. S. (2013). A decade after SARS: Strategies for controlling emerging coronaviruses. Nature Reviews. Microbiology, 11(12), 836–848. https://doi.org/10.1038/nrmicro3143
  • Hemida, M. G., Chu, D. K. W., Perera, R. A. P. M., Ko, R. L. W., So, R. T. Y., Ng, B. C. Y., Chan, S. M. S., Chu, S., Alnaeem, A. A., Alhammadi, M. A., Webby, R. J., Poon, L. L. M., Balasuriya, U. B. R., & Peiris, M. (2017). Coronavirus infections in horses in Saudi Arabia and Oman. Transboundary and Emerging Diseases, 64(6), 2093–2103. https://doi.org/10.1111/tbed.12630
  • Jácome, R., Campillo-Balderas, J. A., Ponce de León, S., Becerra, A., & Lazcano, A. (2020). Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic. Scientific Reports, 10(1), 9294. https://doi.org/10.1038/s41598-020-66440-9
  • Jani, V., Sonavane, U., & Joshi, R. (2019). Detecting early stage structural changes in wild type, pathogenic and non-pathogenic prion variants using Markov state model. RSC Advances, 9(25), 14567–14579. https://doi.org/10.1039/C9RA01507H
  • Jia, H., & Gong, P. (2019). A structure-function diversity survey of the RNA-dependent RNA polymerases from the positive-strand RNA viruses. Frontiers in Microbiology, 10, 1945. https://doi.org/10.3389/fmicb.2019.01945
  • Khalili, J. S., Zhu, H., Mak, N. S. A., Yan, Y., & Zhu, Y. (2020). Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. Journal of Medical Virology, 92(7), 740–746. https://doi.org/10.1002/jmv.25798
  • Kim, Y., Cheon, S., Min, C.-K., Sohn, K. M., Kang, Y. J., Cha, Y.-J., Kang, J.-I., Han, S. K., Ha, N.-Y., Kim, G., Aigerim, A., Shin, H. M., Choi, M.-S., Kim, S., Cho, H.-S., Kim, Y.-S., & Cho, N.-H. (2016). Spread of mutant middle east respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak. mBio, 7(2), e00019. https://doi.org/10.1128/mBio.00019-16
  • Konkolova, E., Dejmek, M., Hřebabecký, H., Šála, M., Böserle, J., Nencka, R., & Boura, E. (2020). Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antiviral Research, 182, 104899. https://doi.org/10.1016/j.antiviral.2020.104899
  • Koulgi, S., Jani, V., Uppuladinne, V. N. M., Sonavane, U., & Joshi, R. (2020). Remdesivir-bound and ligand-free simulations reveal the probable mechanism of inhibiting the RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2. RSC Advances, 10(45), 26792–26803. https://doi.org/10.1039/D0RA04743K
  • Ko, W. C., Rolain, J. M., Lee, N. Y., Chen, P. L., Huang, C. T., Lee, P. I., & Hsueh, P. R. (2020). Arguments in favour of remdesivir for treating SARS-CoV-2 infections. International Journal of Antimicrobial Agents, 55(4), 105933. https://doi.org/10.1016/j.ijantimicag.2020.105933
  • Ledford, H. (2020). Hopes rise for coronavirus drug remdesivir. Nature. https://doi.org/10.1038/d41586-020-01295-8
  • Liang, C., Tian, L., Liu, Y., Hui, N., Qiao, G., Li, H., Shi, Z., Tang, Y., Zhang, D., Xie, X., & Zhao, X. (2020). A promising antiviral candidate drug for the COVID-19 pandemic: A mini-review of remdesivir. European Journal of Medicinal Chemistry, 201, 112527. https://doi.org/10.1016/j.ejmech.2020.112527
  • Lim, Y. X., Ng, Y. L., Tam, J. P., & Liu, D. X. (2016). Human coronaviruses: A review of virus-host interactions. Diseases, 4(4), 26. https://doi.org/10.3390/diseases4030026
  • Li, Z., Wang, X., Cao, D., Sun, R., Li, C., & Li, G. (2020). Rapid review for the anti-coronavirus effect of remdesivir. Drug Discoveries & Therapeutics, 14(2), 73–76. https://doi.org/10.5582/ddt.2020.01015
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Scherer, M. K., Trendelkamp-Schroer, B., Paul, F., Pérez-Hernández, G., Hoffmann, M., Plattner, N., Wehmeyer, C., Prinz, J.-H., & Noé, F. (2015). PyEMMA 2: A software package for estimation, validation, and analysis of Markov models. Journal of Chemical Theory and Computation, 11(11), 5525–5542. https://doi.org/10.1021/acs.jctc.5b00743
  • Moustafa, I. M., Shen, H., Morton, B., Colina, C. M., & Cameron, C. E. (2011). Molecular dynamics simulations of viral RNA polymerases link conserved and correlated motions of functional elements to fidelity. Journal of Molecular Biology, 410(1), 159–181. https://doi.org/10.1016/j.jmb.2011.04.078
  • Parang, K., El-Sayed, N. S., Kazeminy, A. J., & Tiwari, R. K. (2020). Comparative antiviral activity of Remdesivir and anti-HIV nucleoside analogs against human coronavirus 229E (HCoV-229E). Molecules, 25(10), 2343. https://doi.org/10.3390/molecules25102343
  • Pene, F., Merlat, A., Vabret, A., Rozenberg, F., Buzyn, A., Dreyfus, F., Cariou, A., Freymuth, F., & Lebon, P. (2003). Coronavirus 229E-related pneumonia in immunocompromised patients. Clinical Infectious Diseases, 37(7), 929–932. https://doi.org/10.1086/377612
  • Peters, M. B., Yang, Y., Wang, B., Füsti-Molnár, L., Weaver, M. N., & Merz, K. M. Jr. (2010). Structural survey of zinc containing proteins and the development of the zinc AMBER force field (ZAFF). Journal of Chemical Theory and Computation, 6(9), 2935–2947. https://doi.org/10.1021/ct1002626
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Prajapat, M., Sarma, P., Shekhar, N., Prakash, A., Avti, P., Bhattacharyya, A., Kaur, H., Kumar, S., Bansal, S., Sharma, A. R., & Medhi, B. (2020). Update on the target structures of SARS-CoV-2: A systematic review. Indian Journal of Pharmacology, 52(2), 142–149. https://doi.org/10.4103/ijp.IJP_338_20
  • Prinz, J. H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J. D., Schütte, C., & Noé, F. (2011). Markov models of molecular kinetics: Generation and validation. The Journal of Chemical Physics, 134(17), 174105. https://doi.org/10.1063/1.3565032
  • R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria.
  • Roe, D. R., & Cheatham, T. E. (2018). Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data. Journal of Computational Chemistry, 39(25), 2110–2117. https://doi.org/10.1002/jcc.25382
  • Ruan, Z., Liu, C., Guo, Y., He, Z., Huang, X., Jia, X., & Yang, T. (2021). SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). Journal of Medical Virology, 93(1), 389-400. https://doi.org/10.1002/jmv.26222
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–7. https://doi.org/10.1093/nar/gkv315
  • Sirur, A., De Sancho, D., & Best, R. B. (2016). Markov state models of protein misfolding. The Journal of Chemical Physics, 144(7), 075101. https://doi.org/10.1063/1.4941579
  • Srinivasan, S., Cui, H., Gao, Z., Liu, M., Lu, S., Mkandawire, W., Narykov, O., Sun, M., & Korkin, D. (2020). Structural genomics of SARS-CoV-2 indicates evolutionary conserved functional regions of viral proteins. Viruses, 12(4), 360. https://doi.org/10.3390/v12040360
  • Tchesnokov, E. P., Feng, J. Y., Porter, D. P., & Götte, M. (2019). Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by Remdesivir. Viruses, 11(4), 326. https://doi.org/10.3390/v11040326
  • Thompson, A. A., Albertini, R. A., & Peersen, O. B. (2007). Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions. Journal of Molecular Biology, 366(5), 1459-1474. https://doi.org/10.1016/j.jmb.2006.11.070
  • van der Hoek, L. (2007). Human coronaviruses: What do they cause? Antiviral Therapy, 12(4 Pt B), 651–658.
  • van Hemert, F. J., Zaaijer, H. L., & Berkhout, B. (2015). In silico prediction of ebolavirus RNA polymerase inhibition by specific combinations of approved nucleotide analogues. Journal of Clinical Virology, 73, 89–94. https://doi.org/10.1016/j.jcv.2015.10.020
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, H., Li, X., Li, T., Zhang, S., Wang, L., Wu, X., & Liu, J. (2020). The genetic sequence, origin, and diagnosis of SARS-CoV-2. European Journal of Clinical Microbiology & Infectious Diseases, 39(9), 1629–1627. https://doi.org/10.1007/s10096-020-03899-4
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, Q., Wu, J., Wang, H., Gao, Y., Liu, Q., Mu, A., Ji, W., Yan, L., Zhu, Y., Zhu, C., Fang, X., Yang, X., Huang, Y., Gao, H., Liu, F., Ge, J., Sun, Q., Yang, X., Xu, W., … Rao, Z. (2020). Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell, 182(2), 417–428.e13. https://doi.org/10.1016/j.cell.2020.05.034
  • Wang, Y., Anirudhan, V., Du, R., Cui, Q., & Rong, L. (2021). RNA-dependent RNA polymerase of SARS-CoV-2 as a therapeutic target. Journal of Medical Virology, 93(1), 300-310. https://doi.org/10.1002/jmv.26264
  • Xu, J., Zhao, S., Teng, T., Abdalla, A. E., Zhu, W., Xie, L., Wang, Y., & Guo, X. (2020). Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 12(2), 244. https://doi.org/10.3390/v12020244
  • Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S. G., & Ding, J. (2003). Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design. Nucleic Acids Research, 31(24), 7117–7130. https://doi.org/10.1093/nar/gkg916
  • Zhang, L., & Zhou, R. (2020). Structural basis of the potential binding mechanism of Remdesivir to SARS-CoV-2 RNA-dependent RNA polymerase. The Journal of Physical Chemistry, B, 124(32), 6955–6962. https://doi.org/10.1021/acs.jpcb.0c04198
  • Zhao, Z., & Bourne, P. E. (2020). Structural insights into the binding modes of viral RNA-dependent RNA polymerases using a function-site interaction fingerprint method for RNA virus drug discovery. Journal of Proteome Research, 19(11), 4698-4705. https://doi.org/10.1021/acs.jproteome.0c00623
  • Zhu, W., Chen, C. Z., Gorshkov, K., Xu, M., Lo, D. C., & Zheng, W. (2020). RNA-dependent RNA polymerase as a target for COVID-19 drug discovery. SLAS Discovery. https://doi.org/10.1177/2472555220942123

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.