267
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Immunoinformatics analysis to design novel epitope based vaccine candidate targeting the glycoprotein and nucleoprotein of Lassa mammarenavirus (LASMV) using strains from Nigeria

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , , & show all
Pages 7283-7302 | Received 04 Dec 2020, Accepted 23 Feb 2021, Published online: 15 Mar 2021

References

  • Abdellrazeq, G. S., Fry, L. M., Elnaggar, M. M., Bannantine, J. P., Schneider, D. A., Chamberlin, W. M., Mahmoud, A. H. A., Park, K.-T., Hulubei, V., & Davis, W. C. (2020). Simultaneous cognate epitope recognition by bovine CD4 and CD8 T cells is essential for primary expansion of antigen-specific cytotoxic T-cells following ex vivo stimulation with a candidate Mycobacterium avium subsp. Paratuberculosis peptide vaccine. Vaccine, 38(8), 2016–2025. https://doi.org/10.1016/j.vaccine.2019.12.052
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adhikari, U. K., & Rahman, M. M. (2017). Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach. Infection, Genetics and Evolution, 56, 75–91. https://doi.org/10.1016/j.meegid.2017.10.022
  • Almofti, Y. A., Abd-Elrahman, K. A., Gassmallah, S. A. E., & Salih, M. A. (2018). Multi epitopes vaccine prediction against severe acute respiratory syndrome (SARS) coronavirus using immunoinformatics approaches. American Journal of Microbiological Research, 6(3), 94–114. 10.12691/ajmr-6-3-5
  • Al-Shura, A. N. (2020). Lymphocytes. In Advanced hematology in integrated cardiovascular Chinese medicine (pp. 41–46). Elsevier. 10.1016/978-0-12-817572-9.00007-0
  • Altschul, S. F., Wootton, J. C., Michael Gertz, E., Agarwala, R., Morgulis, A., Schäffer, A. A., & Yu, Y.-K. (2005). Protein database searches using compositionally adjusted substitution matrices. The FEBS Journal, 272(20), 5101–5109. https://doi.org/10.1111/j.1742-4658.2005.04945.x
  • Andersen, K. G., Shapiro, B. J., Matranga, C. B., Sealfon, R., Lin, A. E., Moses, L. M., Folarin, O. A., Goba, A., Odia, I., Ehiane, P. E., Momoh, M., England, E. M., Winnicki, S., Branco, L. M., Gire, S. K., Phelan, E., Tariyal, R., Tewhey, R., Omoniwa, O., … Sabeti, P. C. (2015). Clinical sequencing uncovers origins and evolution of Lassa virus. Cell, 162(4), 738–750. https://doi.org/10.1016/j.cell.2015.07.020
  • Asogun, D. A., Adomeh, D. I., Ehimuan, J., Odia, I., Hass, M., Gabriel, M., Olschläger, S., Becker-Ziaja, B., Folarin, O., Phelan, E., Ehiane, P. E., Ifeh, V. E., Uyigue, E. A., Oladapo, Y. T., Muoebonam, E. B., Osunde, O., Dongo, A., Okokhere, P. O., Okogbenin, S. A., … Günther, S. (2012). Molecular diagnostics for lassa fever at Irrua specialist teaching hospital, Nigeria: Lessons learnt from two years of laboratory operation. PLoS Neglected Tropical Diseases, 6(9), e1839. https://doi.org/10.1371/journal.pntd.0001839
  • Atapour, A., Mokarram, P., MostafaviPour, Z., Hosseini, S. Y., Ghasemi, Y., Mohammadi, S., & Nezafat, N. (2019). Designing a fusion protein vaccine against HCV: An in silico approach. International Journal of Peptide Research and Therapeutics, 25(3), 861–872. https://doi.org/10.1007/s10989-018-9735-4
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(Database issue), D36–D42. https://doi.org/10.1093/nar/gks1195
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • BIOVIA. (2015). Discovery studio modeling environment. Dassault Systemes, Release, 4.
  • Boehme, K. W., & Compton, T. (2004). Innate sensing of viruses by toll-like receptors. Journal of Virology, 78(15), 7867–7873. https://doi.org/10.1128/JVI.78.15.7867-7873.2004
  • Bonner, P. C., Schmidt, W. P., Belmain, S. R., Oshin, B., Baglole, D., & Borchert, M. (2007). Poor housing quality increases risk of rodent infestation and Lassa fever in refugee camps of Sierra Leone. The American Journal of Tropical Medicine and Hygiene, 77(1), 169–175.
  • Borthwick, N., Silva-Arrieta, S., Llano, A., Takiguchi, M., Brander, C., & Hanke, T. (2020). Novel nested peptide epitopes recognized by CD4+ T cells induced by HIV-1 conserved-region vaccines. Vaccines, 8(1), 28. https://doi.org/10.3390/vaccines8010028
  • Bowie, J. U., Luthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Brancatisano, F., Maisetta, G., Barsotti, F., Esin, S., Miceli, M., Gabriele, M., Giuca, M. R., Campa, M., & Batoni, P. (2011). Reduced human beta defensin 3 in individuals with periodontal disease. Journal of Dental Research, 90(2), 241–245. https://doi.org/10.1177/0022034510385686
  • Buchan, D. W. A., & Jones, D. T. (2019). The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Research, 47(W1), W402–W407. https://doi.org/10.1093/nar/gkz297
  • Bui, H., John, S., Wei, L., Nicolas, F., & Alessandro, S. (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics, 8, 361. https://doi.org/10.1186/1471-2105-8-361
  • Bunkute, E., Cummins, C., Crofts, F. J., Bunce, G., Nabney, I. T., & Flower, D. R. (2015). PIP-DB: The Protein Isoelectric Point database. Bioinformatics, 31(2), 295–296. https://doi.org/10.1093/bioinformatics/btu637
  • Calis, J. J., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9(10), e1003266. https://doi.org/10.1371/journal.pcbi.1003266
  • Carvalho, L. H., Sano, G. I., Hafalla, J. C., Morrot, A., De Lafaille, M. A. C., & Zavala, F. (2002). IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nature Medicine, 8(2), 166–170. https://doi.org/10.1038/nm0202-166
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 1–9. https://doi.org/10.1155/2012/842329
  • Channappanavar, R., & Perlman, S. (2020). Evaluation of activation and inflammatory activity of myeloid cells during pathogenic human coronavirus infection. In R. Vijay (Ed.), MERS coronavirus: Methods and protocols (pp. 195–204). Springer US.
  • Charrel, R. N., & De Lamballerie, X. (2003). Arenaviruses other than Lassa virus. Antiviral Research, 57(1-2), 89–100. https://doi.org/10.1016/S0166-3542(02)00202-4
  • Chatterjee, N., Ojha, R., Khatoon, N., & Prajapati, V. K. (2018). Scrutinizing Mycobacterium tuberculosis membrane and secretory proteins to formulate multiepitope subunit vaccine against pulmonary tuberculosis by utilizing immunoinformatic approaches. International Journal of Biological Macromolecules, 118(Pt A), 180–188. https://doi.org/10.1016/j.ijbiomac.2018.06.080
  • Chauhan, V., Rungta, T., Goyal, K., & Singh, M. P. (2019). Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Scientific Reports, 9(1), 2517. https://doi.org/10.1038/s41598-019-39299-8
  • Chen, R. (2012). Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology Advances, 30(5), 1102–1107. https://doi.org/10.1016/j.biotechadv.2011.09.013
  • Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
  • Chukwudozie, O. S., Gray, C. M., Fagbayi, T. A., Chukwuanukwu, R. C., Oyebanji, V. O., Bankole, T. T., Adewole, A. R., & Daniel, E. M. (2020). Immuno-informatics design of a multimeric epitope peptide based vaccine targeting SARS-CoV-2 spike glycoprotein. bioRxiv preprint. https://doi.org/10.1101/2020.07.30.228221. this version posted July 30, 2020.
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14, 346. https://doi.org/10.1186/1471-2105-14-346
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • de Oliveira, T. S. F., Passos, M. S., Kato, R., Salgado, Á., Xavier, J., Jaiswal, A. K., Soares, S. C., Azevedo, V., Giovanetti, M., Tiwari, S., & Alcantara, L. C. J. (2020). Multi-epitope based vaccine against Yellow fever virus applying immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 39, 1–17. https://doi.org/10.1080/07391102.2019.1707120
  • DeLano, W. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40(1), 82–92.
  • Dey, A. K., Malyala, P., & Singh, M. (2014). Physicochemical and functional characterization of vaccine antigens and adjuvants. Expert Review of Vaccines, 13(5), 671–685. https://doi.org/10.1586/14760584.2014.907528
  • Dhanda, S. K., Gupta, S., Vir, P., & Raghava, G. P. (2013). Prediction of IL4 inducing peptides. Clinical & Developmental Immunology, 2013, 263952. https://doi.org/10.1155/2013/263952
  • Dhanda, S. K., Vir, P., & Raghava, G. P. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8, 30. https://doi.org/10.1186/1745-6150-8-30
  • Dong, Q., Zhou, S., & Guan, J. (2009). A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation. Bioinformatics, 25(20), 2655–2662. https://doi.org/10.1093/bioinformatics/btp500
  • Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP – A server for in silico prediction of allergens. BMC Bioinformatics, 14(Suppl 6), S4. https://doi.org/10.1186/1471-2105-14-S6-S4
  • Dorosti, H., Eslami, M., Negahdaripour, M., Ghoshoon, M. B., Gholami, A., Heidari, R., Dehshahri, A., Erfani, N., Nezafat, N., & Ghasemi, Y. (2019). Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. Journal of Biomolecular Structure & Dynamics, 37(13), 3524–3535. https://doi.org/10.1080/07391102.2018.1519460
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Duhovny, D., Nussinov, R., & Wolfson, H. J. (2002). Efficient unbound docking of rigid molecules. In International workshop on algorithms in bioinformatics (pp. 185–200). Springer.
  • Ehichioya, D. U., Dellicour, S., Pahlmann, M., Rieger, T., Oestereich, L., Becker-Ziaja, B., Cadar, D., Ighodalo, Y., Olokor, T., Omomoh, E., Oyakhilome, J., Omiunu, R., Agbukor, J., Ebo, B., Aiyepada, J., Ebhodaghe, P., Osiemi, B., Ehikhametalor, S., Akhilomen, P., … Günther, S. (2019). Phylogeography of Lassa virus in Nigeria. Journal of Virology, 93(21), e00929-19. https://doi.org/10.1128/JVI.00929-19
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press.
  • Goerdt, S., & Orfanos, C. E. (1999). Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity, 10(2), 137–142. https://doi.org/10.1016/S1074-7613(00)80014-X
  • Goldberg, M. F., Roeske, E. K., Ward, L. N., Pengo, T., Dileepan, T., Kotov, D. I., & Jenkins, M. K. (2018). Salmonella persist in activated macrophages in T cell-sparse granulomas but are contained by surrounding CXCR3 ligand-positioned Th1 cells. Immunity, 49(6), 1090–1102. https://doi.org/10.1016/j.immuni.2018.10.009
  • Gonzalez, J. P., Emonet, S., Lamballerie, X. D., & Charrel, R. A. (2007). In J. E. Childs, J. S. Mackenzie, & J. A. Richt (Eds.), Wildlife and emerging zoonotic diseases: The biology, circumstances and consequences of cross-species transmission (Vol. 315, pp. 253–288). Springer.
  • Gori, A., Longhi, R., Peri, C., & Colombo, G. (2013). Peptides for immunological purposes: Design, strategies and applications. Amino Acids, 45(2), 257–268. https://doi.org/10.1007/s00726-013-1526-9
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(2), 526–531. https://doi.org/10.1093/nar/gki376
  • Gu, Y., Sun, X., Li, B., Huang, J., Zhan, B., & Zhu, X. (2017). Vaccination with a paramyosin-based multi-epitope vaccine elicits signifcant protective immunity against Trichinella spiralis infection in mice. Frontiers in Microbiology, 8, 1–9. https://doi.org/10.3389/fmicb.2017.01475
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G. P., & Open Source Drug Discovery Consortium. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Hallam, H. J., Hallam, S., Rodriguez, S. E., Barrett, A. D. T., Beasley, D. W. C., Chua, A., Ksiazek, T. G., Milligan, G. N., Sathiyamoorthy, V., & Reece, L. M. (2018). Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development reviewarticle. NPJ Vaccines, 3(1), 3-11. https://doi.org/10.1038/s41541-018-0049-5
  • Hamasaki-Katagiri, N., Lin, B. C., Simon, J., Hunt, R. C., Schiller, T., Russek-Cohen, E., Komar, A. A., Bar, H., & Kimchi-Sarfaty, C. (2017). The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia. Haemophilia, 23(1), e8–e17. https://doi.org/10.1111/hae.13107
  • Hastie, K. M., Kimberlin, C. R., Zandonatti, M. A., MacRae, I. J., & Saphire, E. O. (2011). Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2396–2401. https://doi.org/10.1073/pnas.1016404108
  • Heinrich, M. L. (2020). Antibodies from Sierra Leone and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Nature Reports, 10, 16030.
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefne: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41, 384–388. https://doi.org/10.1093/nar/gkt458
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for Molecular Simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.) https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hoque, M. N., Istiaq, A., Clement, R. A., Sultana, M., Crandall, K. A., Siddiki, A. Z., & Hossain, M. A. (2019). Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-49468-4
  • Ibukun, F. I. (2020). Inter-lineage variation of Lassa virus glycoprotein epitopes: A challenge to Lassa virus vaccine development. Viruses, 12(4), 386. https://doi.org/10.3390/v12040386
  • Jabbar, B., Rafique, S., Salo-Ahen, O. M. H., Ali, A., Munir, M., Idrees, M., Mirza, M. U., Vanmeert, M., Shah, S. Z., Jabbar, I., & Rana, M. A. (2018). Antigenic peptide prediction from E6 and E7 oncoproteins of HPV types 16 and 18 for therapeutic vaccine design using immunoinformatics and MD simulation analysis. Frontiers in Immunology, 9, 3000. https://doi.org/10.3389/fimmu.2018.03000
  • Jose, L. S., Marta, G., & Pedro, A. (2017). Peptide-based immunotherapeutics and vaccines 2017. Journal of Immunology Research, 2017, 34-48. https://doi.org/10.1155/2017/2680160
  • Kafetzopoulou, L. E., Pullan, S. T., Lemey, P., Suchard, M. A., Ehichioya, D. U., Pahlmann, M., Thielebein, A., Hinzmann, J., Oestereich, L., Wozniak, D. M., Efthymiadis, K., Schachten, D., Koenig, F., Matjeschk, J., Lorenzen, S., Lumley, S., Ighodalo, Y., Adomeh, D. I., Olokor, T., … Duraffour, S. (2019). Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science, 363(6422), 74–77. https://doi.org/10.1126/science.aau9343
  • Kalita, P., Lyngdoh, D. L., Padhi, A. K., Shukla, H., & Tripathi, T. (2019). Development of multi-epitope driven subunit vaccine against Fasciola gigantica using immunoinformatics approach. International Journal of Biological Macromolecules, 138, 224–233. https://doi.org/10.1016/j.ijbiomac.2019.07.024
  • Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2017). Template-based protein structure modeling using the RaptorX web server. Physiology & Behavior, 176(8), 139–148. https://doi.org/10.1016/j.physbeh.2017.03.040
  • Kambayashi, T., & Laufer, T. M. (2014). Atypical MHC class II-expressing antigen-presenting cells: Can anything replace a dendritic cell? Nature Reviews. Immunology, 14(11), 719–730. https://doi.org/10.1038/nri3754
  • Khan, M., Khan, S., Ali, A., Akbar, H., Sayaf, A. M., Khan, A., & Wei, D.-Q. (2019). Immunoinformatics approaches to explore Helicobacter pylori proteome (virulence factors) to design B and T cell multi-epitope subunit vaccine. Scientific Reports, 9(1), 13321. https://doi.org/10.1038/s41598-019-49354-z
  • Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-08842-w
  • Khoury, G. A., Smadbeck, J., Kieslich, C. A., Koskosidis, A. J., Guzman, Y. A., Tamamis, P., & Floudas, C. A. (2017). Princeton_TIGRESS 2.0: High refinement consistency and net gains through support vector machines and molecular dynamics in double-blind predictions during the CASP11 experiment. Proteins: Structure, Function, and Bioinformatics, 85(6), 1078–1098. [PubMed] https://doi.org/10.1002/prot.25274
  • Kohlgraf, K. G., Pingel, L. C., Dietrich, D. E., & Brogden, K. A. (2010). Defensins as anti-inflammatory compounds and mucosal adjuvants. Future Microbiology, 5(1), 99–113. https://doi.org/10.2217/fmb.09.104
  • Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking? Proteins, 81(12), 2159–2166. https://doi.org/10.1002/prot.24403
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8, 424. https://doi.org/10.1186/1471-2105-8-424
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, G. R., Heo, L., & Seok, C. (2016). Effective protein model structure refinement by loop modeling and overall relaxation. Proteins, 84(Suppl 1), 293–301. https://doi.org/10.1002/prot.24858
  • Lee, S., & Nguyen, M. T. (2015). Recent advances of vaccine adjuvants for infectious diseases. Immune Network, 15(2), 51–57. https://doi.org/10.4110/in.2015.15.2.51
  • Lengauer, T., & Rarey, M. (1996). Computational methods for biomolecular docking. Current Opinion in Structural Biology, 6(3), 402–406. https://doi.org/10.1016/S0959-440X(96)80061-3
  • Lenz, O., ter Meulen, J., Klenk, H. D., Seidah, N. G., & Garten, W. (2001). The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proceedings of the National Academy of Sciences of the United States of America, 98(22), 12701–12705. https://doi.org/10.1073/pnas.221447598
  • Li, L., Vorobyov, I., & Allen, T. W. (2013). The different interactions of lysine and arginine side chains with lipid membranes. The Journal of Physical Chemistry. B, 117(40), 11906–11920. https://doi.org/10.1021/jp405418y
  • Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: Progress and challenges. Vaccines, 2(3), 515–536. https://doi.org/10.3390/vaccines2030515
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6, 26. https://doi.org/10.1186/1748-7188-6-26
  • Lukashevich, I. S., Paessler, S., & de la Torre, J. C. (2019). Lassa virus diversity and feasibilty for universal prophylactic vaccine. F1000Research, 8, 134. https://doi.org/10.12688/f1000research.16989.1
  • Magnan, C. N., Arlo, R., & Pierre, B. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics, 25(17), 2200–2207. https://doi.org/10.1093/bioinformatics/btp386
  • Mahanty, S., Hutchinson, K., Agarwal, S., McRae, M., Rollin, P. E., & Pulendran, B. (2003). Cutting edge: Impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. Journal of Immunology, 170(6), 2797–2801. https://doi.org/10.4049/jimmunol.170.6.2797
  • Malfertheiner, P., Schultze, V., Rosenkranz, B., Kaufmann, S. H. E., Ulrichs, T., Novicki, D., Norelli, F., Contorni, M., Peppoloni, S., Berti, D., Tornese, D., Ganju, J., Palla, E., Rappuoli, R., Scharschmidt, B. F., & Del Giudice, G. (2008). Safety and immunogenicity of an intramuscular Helicobacter pylori vaccine in noninfected volunteers: A phase I study. Gastroenterology, 135(3), 787–795. https://doi.org/10.1053/j.gastro.2008.05.054
  • Maniatis, T., Fritsch, E. F., & Sambrook, J. (1982). Molecular cloning: A laboratory manual. Cold Spring Harbor University Press.
  • Messaoudi, A., Belguith, H., & Hamida, J. B. (2013). Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theoretical Biology & Medical Modelling, 10(1), 20–22. https://doi.org/10.1186/1742-4682-10-22
  • McCormick, J. B., & Fisher-Hoch, S. P. (2002). Lassa fever. Current Topics in Microbiology and Immunology, 262, 75–109. https://doi.org/10.1007/978-3-642-56029-3_4
  • Mehla, K., & Ramana, J. (2016). Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: A comparative genomics and immunoinformatics approach. Molecular BioSystems, 12(3), 890–901. https://doi.org/10.1039/c5mb00745c
  • Meza, B., Ascencio, F., Sierra-Beltrán, A. P., Torres, J., & Angulo, C. (2017). A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in silico approach. Infection, Genetics and Evolution, 49, 309–317. https://doi.org/10.1016/j.meegid.2017.02.007
  • Mirza, M. U., Rafique, S., Ali, A., Munir, M., Ikram, N., Manan, A., Salo-Ahen, O. M., & Idrees, M. (2016). Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Scientific Reports, 6, 37313.
  • Möller, S., Croning, M., & Apweiler, R. (2001). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17(7), 646–653. DOI: 10/bioinformatics/17.7.646.
  • Morla, S., Makhija, A., & Kumar, S. (2016). Synonymous codon usage pattern in glycoprotein gene of rabies virus. Gene, 584(1), 1–6. https://doi.org/10.1016/j.gene.2016.02.047
  • Muhammad, S. A., Ashfaq, H., Zafar, S., Munir, F., Jamshed, M. B., Chen, J., & Zhang, Q. (2020). Polyvalent therapeutic vaccine for type 2 diabetes mellitus: Immunoinformatics approach to study co-stimulation of cytokines and GLUT1 receptors. BMC Molecular and Cell Biology, 21(1), 1–7. https://doi.org/10.1186/s12860-020-00279-w
  • Nagpal, G., Usmani, S. S., Dhanda, S. K., Kaur, H., Singh, S., Sharma, M., & Raghava, G. P. (2017). Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Scientific Reports, 7, 42851. https://doi.org/10.1038/srep42851
  • Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J., & Omidinia, E. (2014). A novel multi-epitope peptide vaccine against cancer: An in silico approach. Journal of Theoretical Biology, 349, 121–134. https://doi.org/10.1016/j.jtbi.2014.01.018
  • Nigeria Centre for Disease Control (NCDC). (2020). Weekly epidemiological report. Retrieved 1/12/2020, from https://ncdc.gov.ng/reports/weekly
  • Ogbu, O., Ajuluchukwu, E., & Uneke, C. J. (2007). Lassa fever in West African sub-region: An overview. Journal of Vector Borne Diseases, 44(1), 1–11.
  • Olayemi, A., & Fichet-Calvet, E. (2020). Attributes affecting emergence of the Lassa virus in rodents across Western Africa. Viruses, 12(3), 312–543. https://doi.org/10.3390/v12030312
  • Pandey, R. K., Ojha, R., Aathmanathan, V. S., Krishnan, M., & Prajapati, V. K. (2018). Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine, 36(17), 2262–2272. https://doi.org/10.1016/j.vaccine.2018.03.042
  • Park, M. S., Kim, J. I., Lee, I., Park, S., Bae, J.-Y., & Park, M.-S. (2018). Towards the application of human defensins as antivirals. Biomolecules & Therapeutics, 26(3), 242–254. https://doi.org/10.4062/biomolther.2017.172
  • Parrinello, M., & Rahman, A. (1982). Strain fluctuations and elastic constants. Journal of Chemical Physics, 76(5), 2662–2666. https://doi.org/10.1063/1.443248
  • Patra, P., Mondal, N., Patra, B. C., & Bhattacharya, M. (2019). Epitope-based vaccine designing of Nocardia asteroides targeting the virulence factor Mce-family protein by immunoinformatics approach. International Journal of Peptide Research and Therapeutics, 26, 1165–1176. https://doi.org/10.1007/s10989-019-09921-4
  • Pavli, P., Hume, D. A., Van De Pol, E., & Doe, W. F. (1993). Dendritic cells, the major antigenpresenting cells of the human colonic lamina propria. Immunology, 78(1), 132.
  • Peters, B., Sidney, J., Bourne, P., Bui, H.-H., Buus, S., Doh, G., Fleri, W., Kronenberg, M., Kubo, R., Lund, O., Nemazee, D., Ponomarenko, J. V., Sathiamurthy, M., Schoenberger, S., Stewart, S., Surko, P., Way, S., Wilson, S., & Sette, A. (2005). The immune epitope database and analysis resource: From vision to blueprint. PLoS Biology, 3(3), e91. https://doi.org/10.1371/journal.pbio.0030091
  • Pickett, B. E., Sadat, E. L., Zhang, Y., Noronha, J. M., Squires, R. B., Hunt, V., Liu, M., Kumar, S., Zaremba, S., Gu, Z., Zhou, L., Larson, C. N., Dietrich, J., Klem, E. B., & Scheuermann, R. H. (2012). ViPR: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Research, 40(Database issue), D593–D598. https://doi.org/10.1093/nar/gkr859
  • Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1), 514. https://doi.org/10.1186/1471-2105-9-514
  • Rahmani, A., Baee, M., Rostamtabar, M., Karkhah, A., Alizadeh, S., Tourani, M., & Reza, H. (2019). Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches. International Journal of Biological Macromolecules, 141, 125–136. https://doi.org/10.1016/j.ijbiomac.2019.08.259
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rapin, N., Lund, O., & Castiglione, F. (2011). Immune system simulation online. Bioinformatics, 27(14), 2013–2014. https://doi.org/10.1093/bioinformatics/btr335
  • Reji, M. I. (2013). Computation of molecular weight of proteins. Proceedings of UGC Sponsored Third National Conference on Modern Trends in Electronic Communication & Signal Processing (NCMES-2013), Department of Electronics, BPC College.
  • Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5, 1–17. https://doi.org/10.3389/fmicb.2014.00172
  • Rossi, G., Ruggiero, P., Peppoloni, S., Pancotto, L., Fortuna, D., Lauretti, L., Volpini, G., Mancianti, S., Corazza, M., Taccini, E., Di Pisa, F., Rappuoli, R., & Del Giudice, G. (2004). Therapeutic vaccination against Helicobacter pylori in the Beagle Dog Experimental Model: Safety, immunogenicity, and efficacy. Infection and Immunity, 72(6), 3252–3259. https://doi.org/10.1128/IAI.72.6.3252-3259.2004
  • Safronetz, D., Lopez, J. E., Sogoba, N., Traore', S. F., Raffel, S. J., Fischer, E. R., Ebihara, H., Branco, L., Garry, R. F., Schwan, T. G., & Feldmann, H. (2010). Detection of Lassa virus, Mali. Emerging Infectious Diseases, 16(7), 1123–1126. https://doi.org/10.3201/eid1607.100146
  • Sarkar, B., Ullah, M. A., Araf, Y., & Rahman, M. S. (2020a). Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Informatics in Medicine Unlocked, 21, 100478. https://doi.org/10.1016/j.imu.2020.100478
  • Sarkar, B., Ullah, M. A., & Araf, Y. (2020b). A systematic and reverse vaccinology approach to design novel subunit vaccines against Dengue virus Type-1 and human papillomavirus-16. Informatics in Medicine Unlocked, 19, 100343. https://doi.org/10.1016/j.imu.2020
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–W367. https://doi.org/10.1093/nar/gki481
  • Shahid, F., Ashfaq, U. A., Javaid, A., & Khalid, H. (2020). Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. Infection, Genetics and Evolution, 80, 104199. https://doi.org/10.1016/j.meegid.2020.104199
  • Shamriz, S., Ofoghi, H., & Moazami, N. (2016). Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Computers in Biology and Medicine, 76, 24–29. https://doi.org/10.1016/j.compbiomed.2016.06.015
  • Sharp, P. M., & Li, W. H. (1987). The Codon Adaptation Index – A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15(3), 1281–1295. https://doi.org/10.1093/nar/15.3.1281
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., Asa, B. F., Ngale, F. N., Vanhamme, L., & Souopgui, J. (2019). In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports, 9(1), 1–18. https://doi.org/10.1038/s41598-019-40833-x
  • Siddle, K. J., Eromon, P., Barnes, K. G., Mehta, S., Oguzie, J. U., Odia, I., Schaffner, S. F., Winnicki, S. M., Shah, R. R., Qu, J., Wohl, S., Brehio, P., Iruolagbe, C., Aiyepada, J., Uyigue, E., Akhilomen, P., Okonofua, G., Ye, S., Kayode, T., … Happi, C. T. (2018). Genomic analysis of Lassa virus during an increase in cases in Nigeria in 2018. The New England Journal of Medicine, 379(18), 1745–1753. https://doi.org/10.1056/NEJMoa1804498
  • Tanchot, C., & Rocha, B. (2003). CD8 and B cell memory: Same strategy, same signals. Nature Immunology, 4(5), 431–432. https://doi.org/10.1038/ni0503-431
  • Tosta, S. F., Passos, M. S., Kato, R., Salgado, Á., Xavier, J., Jaiswal, A. K., Soares, S. C., Azevedo, V., Giovanetti, M., Tiwari, S., & Alcantara, L. C. (2021). Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 39(1), 219–235. https://doi.org/10.1080/07391102.2019.1707120
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3), 435–444. https://doi.org/10.1002/prot.25219
  • Vita, R., Overton, J. A., Greenbaum, J. A., Ponomarenko, J., Clark, J. D., Cantrell, J. R., Wheeler, D. K., Gabbard, J. L., Hix, D., Sette, A., & Peters, B. (2015). The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 43(Database issue), D405–D12. https://doi.org/10.1093/nar/gku938
  • Vogel, D., Rosenthal, M., Gogrefe, N., Reindl, S., & Günther, S. (2019). Biochemical characterization of the Lassa virus L protein. The Journal of Biological Chemistry, 294(20), 8088–8100. . https://doi.org/10.1074/jbc.RA118.006973
  • Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., & Peters, B. (2010). Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 11(1), 568. https://doi.org/10.1186/1471-2105-11-568
  • Watanabe, Y., Raghwani, J., Allen, J. D., Seabright, G. E., Li, S., Moser, F., Huiskonen, J. T., Strecker, T., Bowden, T. A., & Crispin, M. (2018). Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proceedings of the National Academy of Sciences of the United States of America, 115(28), 7320–7325. https://doi.org/10.1073/pnas.1803990115
  • Weinberg, A., Jin, G., Sieg, S., & McCormick, T. S. (2012). The yin and yang of human Beta-defensins in health and disease. Frontiers in Immunology, 3, 294. https://doi.org/10.3389/fimmu.2012.00294
  • World Health Organization (WHO). (2020). Lassa fever – Nigeria. Retrieved 1/12/2020, from https://www.who.int/csr/don/20-february-2020-lassa-fever-nigeria/en/
  • Xing, J., Ly, H., & Liang, Y. (2015). The Z proteins of pathogenic but not nonpathogenic arenaviruses inhibit RIG-I-like receptor-dependent interferon production. Journal of Virology, 89(5), 2944–2955. https://doi.org/10.1128/JVI.03349-14
  • Yin, D., Li, L., Song, X., Li, H., Wang, J., Ju, W., Qu, X., Song, D., Liu, Y., Meng, X., Cao, H., Song, W., Meng, R., Liu, J., Li, J., & Xu, K. (2016). A novel multi-epitope recombined protein for diagnosis of human brucellosis. BMC Infectious Diseases, 16, 219.
  • Yun, N. E., & Walker, D. H. (2012). Pathogenesis of Lassa fever. Viruses, 4(10), 2031–2048. https://doi.org/10.3390/v4102031
  • Zinzula, L., & Tramontano, E. (2013). Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: Hide, mask, hit. Antiviral Research, 100(3), 615–635. https://doi.org/10.1016/j.antiviral.2013.10.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.