321
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Potential inhibitors of angiotensin converting enzyme 2 receptor of COVID-19 by Corchorus olitorius Linn using docking, molecular dynamics, conceptual DFT investigation and pharmacophore mapping

, , &
Pages 7311-7323 | Received 22 Dec 2020, Accepted 23 Feb 2021, Published online: 11 Mar 2021

References

  • Aanouz, I., Belhassan, A., Khatabi, K. E., Lakhlifi, T., Idrissi, M. E., & Bouachrine, M. (2020). Moroccan medicinal plants as inhibitors of COVID-19: Computational investigations. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1758790.
  • Abdelli, I., Hassani, F., Bekkel Brikci, S., & Ghalem, S. (2020). In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from western Algeria. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1763199.
  • Agu, R. U., Ugwoke, M. I., Armand, M., Kinget, R., & Verbeke, N. (2001). The lung as a route for systemic delivery of therapeutic proteins and peptides. Respiratory Research, 2(4), 1–12.
  • Al Batran, R., Al‐Bayaty, F., Ameen Abdulla, M., Jamil Al‐Obaidi, M. M., Hajrezaei, M., Hassandarvish, P., Fouad, M., Golbabapour, S., & Talaee, S. (2013). Gastroprotective effects of C orchorus olitorius leaf extract against ethanol‐induced gastric mucosal hemorrhagic lesions in rats. Journal of Gastroenterology and Hepatology, 28(8), 1321–1329. https://doi.org/10.1111/jgh.12229
  • Awan, F. M., Obaid, A., Ikram, A., & Janjua, H. A. (2017). Mutation-structure-function relationship based integrated strategy reveals the potential impact of deleterious missense mutations in autophagy related proteins on hepatocellular carcinoma (HCC): A comprehensive informatics approach. International Journal of Molecular Sciences, 18(1), 139. https://doi.org/10.3390/ijms18010139
  • Azuma, K., Nakayama, M., Koshioka, M., Ippoushi, K., Yamaguchi, Y., Kohata, K., Yamauchi, Y., Ito, H., & Higashio, H. (1999). Phenolic antioxidants from the leaves of Corchorus olitorius L. Journal of Agricultural and Food Chemistry, 47(10), 3963–3966. https://doi.org/10.1021/jf990347p
  • Barku, V. Y. A., Boye, A., & Quansah, N. (2013). Antioxidant and wound healing studies on the extracts of Corchorus olitorius leaf. World Essays Journal, 1, 67–73.
  • Basnet, P., Matsushige, K., Hase, K., Kadota, S., & Namba, T. (1996). Potent antihepatotoxic activity of dicaffeoyl quinic acids from propolis. Biological and Pharmaceutical Bulletin, 19(4), 655–657. https://doi.org/10.1248/bpb.19.655
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bond, S. D., Leimkuhler, B. J., & Laird, B. B. (1999). The Nosé–Poincaré method for constant temperature molecular dynamics. Journal of Computational Physics, 151(1), 114–134. https://doi.org/10.1006/jcph.1998.6171
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1758788
  • Borokini, T. I., & Omotayo, F. O. (2012). Phytochemical and ethnobotanical study of some selected medicinal plants from Nigeria. Journal of Medicinal Plants Research, 6(7), 1106–1118.
  • Brünger, A., Brooks, C. L., III, & Karplus, M. (1984). Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chemical Physics Letters, 105(5), 495–500. https://doi.org/10.1016/0009-2614(84)80098-6
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
  • Chenafa, H., Mesli, F., Daoud, I., Achiri, R., Ghalem, S., & Neghra, A. (2021). In silico design of enzyme α-amylase and α-glucosidase inhibitors using molecular docking, molecular dynamic, conceptual DFT investigation and pharmacophore modelling. Journal of Biomolecular Structure and Dynamics, 1–22. https://doi.org/10.1080/07391102.2021.1882340
  • Choy, Y. B., & Prausnitz, M. R. (2011). The rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharmaceutical Research, 28(5), 943–948. https://doi.org/10.1007/s11095-010-0292-6
  • Consolacion, Y. R., Julius, L. A. V., Maria, C. S. T., & Chien-Chang, S. (2016). Chemical constituents of Corchorus olitorius (Linn.). International Journal of Pharmacognosy and Phytochemical Research, 8, 2085–2089.
  • Daoud, I., Melkemi, N., Salah, T., & Ghalem, S. (2018). Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors. Computational Biology and Chemistry, 74, 304–326. https://doi.org/10.1016/j.compbiolchem.2018.03.021
  • Das, A. K., Sahu, R., Dua, T. K., Bag, S., Gangopadhyay, M., Sinha, M. K., & Dewanjee, S. (2010). Arsenic-induced myocardial injury: Protective role of Corchorus olitorius leaves. Food and Chemical Toxicology, 48(5), 1210–1217. https://doi.org/10.1016/j.fct.2010.02.012
  • Dewar, M. J., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. (1985). Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107(13), 3902–3909. https://doi.org/10.1021/ja00299a024
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10-11), 647–671. https://doi.org/10.1007/s10822-006-9087-6
  • Elfiky, A. A., & Azzam, E. B. (2020). Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1758789
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1756411
  • Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
  • Furumoto, T., Wang, R., Okazaki, K., Hasan, A. F. M F., Ali, M. I., Kondo, A., & Fukui, H. (2002). Antitumor promoters in leaves of jute (Corchorus capsularis and Corchorus olitorius). Food Science and Technology Research, 8(3), 239–243. https://doi.org/10.3136/fstr.8.239
  • Hasan, A., Paray, B. A., Hussain, A., Qadir, F. A., Attar, F., Aziz, F. M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., Shahpasand, K., Saboury, A. A., Falahati, M., & Shahpasand, K. (2020). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics, 1–9.  https://doi.org/10.1080/07391102.2020.1754293
  • Heywood, V. H., Brummitt, R. K., Culham, A., & Seberg, O. (2007). Flowering plant families of the world (Vol. 88). Firefly Books.
  • HyperChem. (2002). HYPERCHEM (TM) Professional 7.52, Hypercube, Inc., 1115 NW 4th Street, Gainesville, FL 32601, USA.
  • Geronikaki, A., Poroikov, V., Hadjipavlou‐Litina, D., Filimonov, D., Lagunin, A., & Mgonzo, R. (1999). Computer aided predicting the biological activity spectra and experimental testing of new thiazole derivatives. Quantitive Structure-Activity Relationships, 18(1), 16–25. https://doi.org/10.1002/(SICI)1521-3838(199901)18:1<16::AID-QSAR16>3.0.CO;2-O
  • Grinter, S. Z., & Zou, X. (2014). Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules, 19(7), 10150–10176. https://doi.org/10.3390/molecules190710150
  • Guastalegname, M., & Vallone, A. (2020). Could chloroquine /hydroxychloroquine be harmful in coronavirus disease 2019 (COVID-19) treatment? Clinical Infectious Diseases, 71(15), 888–889. https://doi.org/10.1093/cid/ciaa321
  • Ilhan, S., Savaroğlu, F., & Çolak, F. (2007). Antibacterial and antifungal activity of Corchorus olitorius L. (Molokhia) extracts. International Journal of Natural & Engineering Sciences, 1(3), 59–61.
  • Ismail, I. F., Golbabapour, S., Hassandarvish, P., Hajrezaie, M., Abdul Majid, N., Kadir, F. A., Al-Bayaty, F., Awang, K., Hazni, H., & Abdulla, M. A. ( (2012). 2012). Gastroprotective activity of Polygonum chinense aqueous leaf extract on ethanol-induced hemorrhagic mucosal lesions in rats. Evidence-Based Complementary and Alternative Medicine, 2012, 1–9. https://doi.org/10.1155/2012/404012
  • Javaid, S., Shaikh, M., Fatima, N., & Choudhary, M. I. (2019). Natural compounds as angiogenic enzyme thymidine phosphorylase inhibitors: In vitro biochemical inhibition, mechanistic, and in silico modeling studies. PLoS One, 14(11), e0225056. https://doi.org/10.1371/journal.pone.0225056
  • Jeffrey, G. A., & Jeffrey, G. A. (1997). An introduction to hydrogen bonding (Vol. 12, p. 228). Oxford University Press.
  • Kiebre, M., Kando, P. B., Kiebre, Z., Sawadogo, M., Sawadogo, N., Sawadogo, B., Nanema, K. R., & Traore, R. E. (2016). Evaluation agromorphologique d'accessions de corète potagère (Corchorus olitorius. L) du Burkina Faso [Agromorphological evaluation of accessions of jute potager (Corchorus solitorius. L) of Burkina Faso]. International Journal of Innovation and Applied Studies, 14(1), 198.
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1751298
  • Kumar, D., Kumari, K., Jayaraj, A., Kumar, V., Kumar, R. V., Dass, S. K., Chandra, R., & Singh, P. (2020). Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1752310
  • Kumbasar, T., Hagras, H., Kacprzyk, J., & Pedrycz, W. (2015). An overview on interval type-2 fuzzy PID controllers. In J. Kacprzyk & W. Pedrycz (Eds.), Springer handbook of computational intelligence. Springer Verlag.
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Li, C. J., Huang, S. Y., Wu, M. Y., Chen, Y. C., Tsang, S. F., Chyuan, J. H., & Hsu, H. Y. (2012). Induction of apoptosis by ethanolic extract of Corchorus olitorius leaf in human hepatocellular carcinoma (HepG2) cells via a mitochondria-dependent pathway. Molecules, 17(8), 9348–9360. https://doi.org/10.3390/molecules17089348
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Liu, X., Zhang, B., Jin, Z., Yang, H., & Rao, Z. (2020). The crystal structure of COVID-19 main protease in complex with an inhibitor N3. Protein DataBank.
  • Lopéz-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–W276. https://doi.org/10.1093/nar/gku339
  • Lopéz-Blanco, J. R., Garzón, J. I., & Chacón, P. (2011). iMod: Multipurpose normal mode analysis in internal coordinates. Bioinformatics, 27(20), 2843–2850. https://doi.org/10.1093/bioinformatics/btr497
  • Loumerem, M., & Alercia, A. (2016). Descriptors for jute (Corchorus olitorius L.). Genetic Resources and Crop Evolution, 63(7), 1103–1111. https://doi.org/10.1007/s10722-016-0415-y
  • Mahmoud, A. S., Thao, N., & Mario, A. (2016). Corchorus olitorius Linn: A rich source of Ω3-fatty acids. Pharmaceutica Analytica Acta, 7(6), 486. https://doi.org/10.4172/2153-2435.1000486
  • Mahapatra, A. K., Saha, A., & Basak, S. L. (1998). Origin, taxonomy and distribution of Corchorus species in India. Green Journal, 1, 64–82.
  • Mesli, F., Daoud, I., & Ghalem, S. (2019). Antidiabetic activity of Nigella sativa (BLACK SEED)-by molecular modeling elucidation, molecular dynamic, and conceptual DFT investigation. Pharmacophore, 10(5), 57–66.
  • Mesli, F., Medjahed, K., & Ghalem, S. (2013). Prediction of structural and thermodynamic properties of three products: 1-bromobenzene, tetrachlorethylene and 4-hydroxy-chromen-2-one using numerical methods. Research on Chemical Intermediates, 39(4), 1877–1895. https://doi.org/10.1007/s11164-012-0722-7
  • Mohammadi, N., & Shaghaghi, N. (2020). Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID_19 virus protease by molecular docking analysis. Preprint, https://doi.org/10.26434/chemrxiv, 11987475, v1.
  • Molecular Operating Environment (MOE). (2013). 2013.08; Chemical Computing Group Inc.
  • Mukesh, B., & Rakesh, K. (2011). Review on molecular docking. IJRAP, 2(6), 1746–1751.
  • Nadia, B., Mesli, F., Zahra, B. F., Merad-Boussalah, N., Radja, A., Muselli, A., Djabou, N., & Dib, M. E. A. (2020). Chemical composition variability and vascular endothelial growth factor receptors inhibitory activity of Inulaviscosa essential oils from Algeria. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2020.1847686
  • Naz, S., Farooq, U., Khan, S., Sarwar, R., Mabkhot, Y. N., Saeed, M., Alsayari, A., Muhsinah, A. B., & Ul-Haq, Z. (2020). Pharmacophore model-based virtual screening, docking, biological evaluation and molecular dynamics simulations for inhibitors discovery against α-tryptophan synthase from Mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1715259
  • Nishiumi, S., Yabushita, Y., Fukuda, I., Mukai, R., Yoshida, K. I., & Ashida, H. (2006). Molokhia (Corchorus olitorius L.) extract suppresses transformation of the aryl hydrocarbon receptor induced by dioxins. Food and Chemical Toxicology, 44(2), 250–260. https://doi.org/10.1016/j.fct.2005.07.007
  • Oboh, G., Raddatz, H., & Henle, T. (2009). Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of Jute (Corchorus olitorius) leaf. International Journal of Food Sciences and Nutrition, 60(sup2), 124–134. https://doi.org/10.1080/09637480902824131
  • Osawaru, M. E., Ogwu, M. C., Chime, A. O., & Amorighoye, A. R. (2012). Morphological evaluation and protein profiling of three accessions of Nigerian Corchorus Linn. species. Bayero Journal of Pure and Applied Sciences, 5(1), 26–32. https://doi.org/10.4314/bajopas.v5i1.6
  • Parikesit, A. A., Nugroho, A. S., Hapsari, A., & Tambunan, U. S. F. (2015). The computation of cyclic peptide with prolin-prolin bond as fusion inhibitor of DENV envelope protein through molecular docking and molecular dynamics simulation. arXiv preprint arXiv, 1511.01388.
  • Pearson, R. G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences of the United States of America, 83(22), 8440–8441. https://doi.org/10.1073/pnas.83.22.8440
  • Rao, E. V., Rao, K. N., & Rao, D. V. (1972). Polar glycosides of the seeds of Corchorus olitorius. Indian Journal of Pharmacology, 34, 168.
  • Release, S. (2018). 2: Maestro, version 11.8. Schrödinger.
  • Semaoui, M., Mesli, F., Dib, M. E. A., Tabti, B., Achiri, R., Costa, J., & Muselli, A. (2020). Statistical analysis/theoretical investigations of novel vascular endothelial growth factor of davanoide from Scolymus grandifloras Desf as potent anti-angiogenic drug properties. Journal of Biomolecular Structure and Dynamics, 1–20. https://doi.org/10.1080/07391102.2020.1851301
  • Singh, D., Gawande, D. Y., Singh, T., Poroikov, V., & Goel, R. K. (2014). Revealing pharmacodynamics of medicinal plants using in silico approach: A case study with wet lab validation. Computers in Biology and Medicine, 47, 1–6. https://doi.org/10.1016/j.compbiomed.2014.01.003
  • Soykut, G., Becer, E., Calis, I., Yucecan, S., & Vatansever, S. (2018). Apoptotic effects of Corchorus olitorius L. leaf extracts in colon adenocarcinoma cell lines. Progress in Nutrition, 20(4), 689–698.
  • Stitou, M., Toufik, H., Bouachrine, M., & Lamchouri, F. (2021). Quantitative structure–activity relationships analysis, homology modeling, docking and molecular dynamics studies of triterpenoid saponins as Kirsten rat sarcoma inhibitors. Journal of Biomolecular Structure and Dynamics, 39(1), 152-170. https://doi.org/10.1080/07391102.2019.1707122
  • Sturgeon, J. B., & Laird, B. B. (2000). Symplectic algorithm for constant-pressure molecular dynamics using a Nosé–Poincaré thermostat. The Journal of Chemical Physics, 112(8), 3474–3482. https://doi.org/10.1063/1.480502
  • Taiwo, B. J., Taiwo, G. O., Olubiyi, O. O., & Fatokun, A. A. (2016). Polyphenolic compounds with anti-tumour potential from Corchorus olitorius (L.) Tiliaceae, a Nigerian leaf vegetable. Bioorganic & Medicinal Chemistry Letters, 26(15), 3404–3410. https://doi.org/10.1016/j.bmcl.2016.06.058
  • Toda, M., Kubo, R., Saitō, N., & Hashitsume, N. (1991). Statistical physics II: Nonequilibrium statistical mechanics (Vol. 2). Springer Science & Business Media.
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Veeramachaneni, G. K., Thunuguntla, V. B. S. C., Bobbillapati, J., & Bondili, J. S. (2020). Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1773318
  • Wang, L., Yamasaki, M., Katsube, T., Sun, X., Yamasaki, Y., & Shiwaku, K. (2011). Antiobesity effect of polyphenolic compounds from molokheiya (Corchorus olitorius L.) leaves in LDL receptor-deficient mice. European Journal of Nutrition, 50(2), 127–133. https://doi.org/10.1007/s00394-010-0122-y
  • Wang, W., & Skeel, R. D. (2003). Analysis of a few numerical integration methods for the Langevin equation. Molecular Physics, 101(14), 2149–2156. https://doi.org/10.1080/0026897031000135825
  • Whitlock, B. A., Karol, K. G., & Alverson, W. S. (2003). Here Chloroplast DNA sequences confirm the placement of the Enigmatic Oceanopapaver withinCorchorus (Grewioideae: Malvaceae s.l., Formerly Tiliaceae). International Journal of Plant Sciences, 164, 35–41.
  • Yoshikawa, M., Shimada, H., Saka, M., Yoshizumi, S., Yamahara, J., & MATsUDA, H. (1997). Medicinal foodstuffs. V. Moroheiya.(1): Absolute stereostructures of corchoionosides A, B, and C, histamine release inhibitors from the leaves of Vietnamese Corchorus olitorius L.(Tiliaceae). Chemical & Pharmaceutical Bulletin, 45(3), 464–469. https://doi.org/10.1248/cpb.45.464
  • Zaretzki, J., Bergeron, C., Huang, T. W., Rydberg, P., Swamidass, S. J., & Breneman, C. M. (2013). RS-WebPredictor: A server for predicting CYP-mediated sites of metabolism on drug-like molecules. Bioinformatics, 29(4), 497–498. https://doi.org/10.1093/bioinformatics/bts705

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.