265
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Insights into the interaction dynamics between volatile anesthetics and tubulin through computational molecular modelling

ORCID Icon, , &
Pages 7324-7338 | Received 01 Oct 2020, Accepted 24 Feb 2021, Published online: 10 Mar 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Alushin, G. M., Lander, G. C., Kellogg, E. H., Zhang, R., Baker, D., & Nogales, E. (2014). High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell, 157(5), 1117–1129. https://doi.org/10.1016/j.cell.2014.03.053
  • Apicella, A., Soncini, M., Deriu, M. A., Natalello, A., Bonanomi, M., Dellasega, D., Tortora, P., Regonesi, M. E., & Casari, C. S. (2013). A hydrophobic gold surface triggers misfolding and aggregation of the amyloidogenic Josephin domain in monomeric form, while leaving the oligomers unaffected. PLoS One, 8(3), e58794. https://doi.org/10.1371/journal.pone.0058794
  • Avidan, M. S., & Evers, A. S. (2011). Review of clinical evidence for persistent cognitive decline or incident dementia attributable to surgery or general anesthesia. Journal of Alzheimer's Disease, 24(2), 201–216. https://doi.org/10.3233/JAD-2011-101680
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins Struct Proteins, 71(1), 261–277. https://doi.org/10.1002/prot.21715
  • Berendsen, H. J. C. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bernardi, R. C., Melo, M. C. R., & Schulten, K. (2015). Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochimica et Biophysica Acta, 1850(5), 872–877. https://doi.org/10.1016/j.bbagen.2014.10.019
  • Bliss, T. V. P., Collingridge, G. L., & Morris, R. G. M. (2003). Long-term potentiation: Enhancing neuroscience for 30 years – Introduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1432), 607–611.
  • Bowdle, T. A., Knutsen, L. J. S., & Williams, M. (2007). Local and adjunct anesthesia. In John B. Taylor, & David J. Triggle (Eds), Comprehensive medicinal chemistry II (pp. 351–367). Elsevier.
  • Carpenter, E. J., Huzil, J. T., Ludueña, R. F., & Tuszynski, J. (2006). Homology modeling of tubulin: influence predictions for microtubule's biophysical properties. European Biophysics Journal, 36(1), 35–43. https://doi.org/10.1007/s00249-006-0088-0
  • Case, D. A., Belfon, K., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E. I., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G, Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., Kasavajhala, K., Kovalenko, A., Krasny, R., …. Kollman, P. A. ( 2020). AMBER 2020. University of California. https://ambermd.org/CiteAmber.php
  • Chau, P. L. (2010). New insights into the molecular mechanisms of general anaesthetics. British Journal of Pharmacology, 161(2), 288–307. https://doi.org/10.1111/j.1476-5381.2010.00891.x
  • Clugnet, M. C., & LeDoux, J. E. (1990). Synaptic plasticity in fear conditioning circuits: Induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. The Journal of Neuroscience, 10(8), 2818–2824. https://doi.org/10.1523/JNEUROSCI.10-08-02818.1990
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Conde, C., & Cáceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews. Neuroscience, 10(5), 319–332. https://doi.org/10.1038/nrn2631
  • Craddock, T. J. A., Friesen, D., Mane, J., Hameroff, S., & Tuszynski, J. A. (2014). The feasibility of coherent energy transfer in microtubules. Journal of the Royal Society, Interface, 11, 2–10. https://doi.org/10.1098/rsif.2014.0677
  • Craddock, T. J. A., George, M., Freedman, H., Barakat, K. H., Damaraju, S., Hameroff, S., & Tuszynski, J. A. (2012). Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: Implications for side effects of general anesthesia. PLoS One, 7(6), e37251. https://doi.org/10.1371/journal.pone.0037251
  • Craddock, T. J. A., Kurian, P., Preto, J., Sahu, K., Hameroff, S. R., Klobukowski, M., & Tuszynski, J. A. (2017). Anesthetic alterations of collective terahertz oscillations in tubulin correlate with clinical potency: Implications for anesthetic action and post-operative cognitive dysfunction. Scientific Reports, 7, 9877. https://doi.org/10.1038/s41598-017-09992-7
  • Craddock, T. J. A., Tuszynski, J. A., & Hameroff, S. (2012). Cytoskeletal signaling: Is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Computational Biology, 8(3), e1002421. https://doi.org/10.1371/journal.pcbi.1002421
  • Deriu, M. A., Grasso, G., Licandro, G., Danani, A., Gallo, D., Tuszynski, J. A., & Morbiducci, U. (2014). Investigation of the Josephin domain protein-protein interaction by molecular dynamics. PLoS One, 9(9), e108677. https://doi.org/10.1371/journal.pone.0108677
  • Eckenhoff, R. G., & Johansson, J. S. (1997). Molecular interactions between inhaled anesthetics and proteins. Pharmacological Reviews, 49(4), 343–367.
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8
  • Ewald, P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 369(3), 253–287. https://doi.org/10.1002/andp.19213690304
  • Fodale, V., Ritchie, K., Rasmussen, L. S., & Mandal, P. K. (2010). Anesthetics and Alzheimer’s disease: Background and research. Journal of Alzheimer’s Disease, 22, Suppl 3:1-3.
  • Fütterer, C. D., Maurer, M. H., Schmitt, A., Feldmann, R. E., Kuschinsky, W., & Waschke, K. F. (2004). Alterations in rat brain proteins after desflurane anesthesia. Anesthesiology, 100(2), 302–308. https://doi.org/10.1097/00000542-200402000-00019
  • Gowers, R., Linke, M., Barnoud, J., Reddy, T., Melo, M., Seyler, S., Domański, J., Dotson, D., Buchoux, S., & Kenney, I. (2016). MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations [Paper presentation]. Proceedings of the 15th Python in Science Conference, 98–105. https://doi.org/10.25080/majora-629e541a-00e
  • Grasso, G., Deriu, M. A., Prat, M., Rimondini, L., Vernè, E., Follenzi, A., & Danani, A. (2015). Cell penetrating peptide adsorption on magnetite and silica surfaces: A computational investigation. The Journal of Physical Chemistry. B, 119(26), 8239–8246. https://doi.org/10.1021/jp512782e
  • Grasso, G., Deriu, M. A., Tuszynski, J. A., Gallo, D., Morbiducci, U., & Danani, A. (2016). Conformational fluctuations of the AXH monomer of Ataxin-1. Proteins Struct Proteins, 84(1), 52–59. https://doi.org/10.1002/prot.24954
  • Grasso, G., Muscat, S., Rebella, M., Morbiducci, U., Audenino, A., Danani, A., & Deriu, M. A. M. A. (2018). Cell penetrating peptide modulation of membrane biomechanics by Molecular dynamics. Journal of Biomechanics, 73, 137–144. https://doi.org/10.1016/j.jbiomech.2018.03.036
  • Guo, J., Zhou, C., Liang, P., Huang, H., Li, F., Chen, X., & Liu, J. (2014). Comparison of subarachnoid anesthetic effect of emulsified volatile anesthetics in rats. International Journal of Clinical and Experimental Pathology, 7(12), 8748–8755.
  • Hameroff, S. R., Craddock, T. J. A., & Tuszynski, J. A. (2010). "Memory bytes" – Molecular match for CaMKII phosphorylation encoding of microtubule lattices. Journal of Integrative Neuroscience, 9(3), 253–267. https://doi.org/10.1142/s0219635210002482
  • Hameroff, S., & Penrose, R. (2014). Consciousness in the universe: A review of the “Orch OR” theory. Physics of Life Reviews, 11(1), 39-78.
  • Hameroff, S., Nip, A., Porter, M., & Tuszynski, J. (2002). Conduction pathways in microtubules, biological quantum computation, and consciousness. Bio Systems, 64(1-3), 149–168. https://doi.org/10.1016/s0303-2647(01)00183-6
  • Hinkley, R. E. (1976). Microtubule—macrotubule transformations induced by volatile anesthetics. Mechanism of macrotubule assembly. Journal of Ultrastructure Research, 57(3), 237–250. https://doi.org/10.1016/S0022-5320(76)80113-X
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hooft, R. W., Vriend, G., Sander, C., & Abola, E. E. (1996). Abola EE errors in protein structures. Nature, 381(6580), 272. https://doi.org/10.1038/381272a0
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Huzil, J. T., Ludueña, R. F., & Tuszynski, J. (2006). Comparative modelling of human β tubulin isotypes and implications for drug binding. Nanotechnology, 17(4), S90–S100. https://doi.org/10.1088/0957-4484/17/4/014
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Kalenka, A., Feldmann, R. E., Kuschinsky, W., Waschke, K. F., & Maurer, M. H. (2007). The effects of sevoflurane anesthesia on rat brain proteins: A proteomic time-course analysis. Anesthesia and Analgesia, 104, 1129–1135. https://doi.org/10.1213/01.ane.0000260799.37107.e6
  • Kapitein, L. C., & Hoogenraad, C. C. (2015). Building the neuronal microtubule cytoskeleton. Neuron, 87(3), 492–506. https://doi.org/10.1016/j.neuron.2015.05.046
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Leandro-García, L. J., Leskelä, S., Landa, I., Montero-Conde, C., López-Jiménez, E., Letón, R., Cascón, A., Robledo, M., & Rodríguez-Antona, C. (2010). Tumoral and tissue-specific expression of the major human beta-tubulin isotypes . Cytoskeleton, 67(4), 214–223. https://doi.org/10.1002/cm.20436
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Livingston, A., & Vergara, G. A. (1979). Effects of halothane on microtubules in the sciatic nerve of the rat. Cell and Tissue Research, 198(1), 137–144. https://doi.org/10.1007/BF00234841
  • Lømo, T. (2003). The discovery of long-term potentiation. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1432), 617-620.
  • Lu, D., Aksimentiev, A., Shih, A. Y., Cruz-Chu, E., Freddolino, P. L., Arkhipov, A., & Schulten, K. (2006). The role of molecular modeling in bionanotechnology. Physical Biology, 3(1), S40–S53. https://doi.org/10.1088/1478-3975/3/1/S05
  • Martí-Renom, M. A., Stuart, A. C., Fiser, A., Sánchez, R., Melo, F., & Sali, A. (2000). Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure, 29, 291–325. https://doi.org/10.1146/annurev.biophys.29.1.291
  • Mazze, R. I., Shue, G. L., & Jackson, S. H. (1971). Renal dysfunction associated with methoxyflurane anesthesia. JAMA, 216(2), 278–288. https://doi.org/10.1001/jama.1971.03180280032006
  • Meyer, H. (1899). Welche Eigenschaft der Anaesthetica bedingt ihre narkotische Wirkung? Naunyn-Schmiedeberg’s. Archiv für Experimentelle Pathologie und Pharmakologie, 42(2-4), 109–118. https://doi.org/10.1007/BF01834479
  • Meyer, H. (1899). Zur Theorie der Alkoholnarkose: 3. Mittheilung; der Einfluss wechselnder Temperatur auf Wirkungsstärke und Theilungscoefficient der Narcotica.
  • Miller, R. D., Wahrenbrock, E. A., Schroeder, C. F., Knipstein, T. W., Eger, E. I., & Buechel, D. R. (1969). Ethylene–halothane anesthesia: Addition or synergism? Anesthesiology, 31(4), 301–304. https://doi.org/10.1097/00000542-196910000-00002
  • Molecular Operating Environment (MOE). (2019). 2019.01. Chemical Computing Group ULC.
  • Monk, T. G., Weldon, B. C., Garvan, C. W., Dede, D. E., Van Der Aa, M. T., Heilman, K. M., & Gravenstein, J. S. (2008). Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology, 108(1), 18–30. https://doi.org/10.1097/01.anes.0000296071.19434.1e
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated dockingwith selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Naveen, M.-A., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. https://doi.org/10.1002/jcc.21787
  • Nogales, E., Wolf, S. G., & Downing, K. H. (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature, 391(6663), 199–204. https://doi.org/10.1038/34465
  • Overton, C. E. (1901). Studien über die Narkose zugleich ein Beitrag zur allgemeinen Pharmakologie.
  • Pan, J. Z., Xi, J., Eckenhoff, M. F., & Eckenhoff, R. G. (2008). Inhaled anesthetics elicit region-specific changes in protein expression in mammalian brain. Proteomics, 8(14), 2983–2992. https://doi.org/10.1002/pmic.200800057
  • Pantsar, T., & Poso, A. (2018). Binding affinity via docking: Fact and fiction. Molecules, 23(8), 1899–1811. https://doi.org/10.3390/molecules23081899
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Porter, K. M., Dayan, A. D., Dickerson, S., & Middleton, P. M. (2018). The role of inhaled methoxyflurane in acute pain management. Open Access Emergency Medicine, 10, 149–164. https://doi.org/10.2147/OAEM.S181222
  • Riazi, S., & Ibarra Moreno, C. A. (2013). Pharmacology and physiology for anesthesia (Vol. 129). Elsevier.
  • Sahni, P. (2016). Tubulin conformation and anaesthetic interaction – An experimental study. Biochemistry and Analytical Biochemistry, 3, 1–7. s https://doi.org/10.4172/2161-1009.1000251
  • Tang, J., Eckenhoff, M. F., & Eckenhoff, R. G. (2010). Anesthesia and the old brain. Anesthesia & Analgesia, 110(2), 421-426. https://doi.org/10.1213/ANE.0b013e3181b80939
  • Telser, A. (1977). The inhibition of flagellar regeneration in Chlamydomonas reinhardii by inhalational anesthetic halothane. Experimental Cell Research, 107(1), 247-252. https://doi.org/10.1016/0014-4827(77)90406-2
  • Tobias, J. W., Eckenhoff, M. F., Xi, J., Eckenhoff, R. G., & Pan, J. Z. (2007). Halothane binding proteome in human brain cortex. Journal of Proteome Research, 6(2), 582–592. https://doi.org/10.1021/pr060311u
  • Touw, W. G., Baakman, C., Black, J., Te Beek, T. A. H., Krieger, E., Joosten, R. P., & Vriend, G. (2015). A series of PDB-related databanks for everyday needs. Nucleic Acids Research, 43(Database issue), D364–D368. https://doi.org/10.1093/nar/gku1028
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3.
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–D672. https://doi.org/10.1093/nar/gkj067

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.