83
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Deciphering the effect of hydrophobicity on protein binding interaction in cobalt(II) complexes by multispectroscopic and computational methods

, , &
Pages 7381-7393 | Received 04 Nov 2020, Accepted 25 Feb 2021, Published online: 09 Mar 2021

References

  • Abou-Zied, O. K., & Al-Shihi, O. I. K. (2008). Characterization of Subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793–10801. https://doi.org/10.1021/ja8031289
  • Alaghaz, A. N. M. (2014). Synthesis, spectroscopic characterization, molecular modeling and potentiometric studies of Co (II), Ni (II), Cu (II) and Zn (II) complexes with 1,1-diaminobutane-Schiff base. Journal of Molecular Structure, 1072, 103–113. https://doi.org/10.1016/j.molstruc.2014.04.079
  • Alaghaz, A. N. M., Ammar, Y. A., Bayoumi, H. A., & Aldhlmani, S. A. (2014). Synthesis, spectral characterization, thermal analysis, molecular modeling and antimicrobial activity of new potentially N2O2 azo-dye Schiff base complexes. Journal of Molecular Structure, 1074, 359–375. https://doi.org/10.1016/j.molstruc.2014.05.078
  • Alaghaz, A. N. M., Bayoumi, H. A., Ammar, Y. A., & Aldhlmani, S. A. (2013). Synthesis, characterization, and antipathogenic studies of some transition metal complexes with N, O-chelating Schiff’s base ligand incorporating azo and sulfonamide Moieties. Journal of Molecular Structure, 1035, 383–399. https://doi.org/10.1016/j.molstruc.2012.11.030
  • Buttar, D., Colclough, N., Gerhardt, S., MacFaul, P. A., Phillips, S. D., Plowright, A., Whittamore, P., Tam, K., Maskos, K., Steinbacher, S., & Steuber, H. (2010). A combined spectroscopic and crystallographic approach to probing drug-human serum albumin interactions. Bioorganic & Medicinal Chemistry, 18(21), 7486–7496. https://doi.org/10.1016/j.bmc.2010.08.052
  • Boaz, H., & Rollefson, G. K. (1950). The quenching of fluorescence. Deviations from the Stem-Volmer law. Journal of the American Chemical Society, 72(8), 3435–3443. https://doi.org/10.1021/ja01164a032
  • Bravo, A., & Anacona, J. R. (2001). Metal complexes of the flavonoid quercetin: Antibacterial properties. Transition Metal Chemistry, 26(1/2), 20–23. https://doi.org/10.1023/A:1007128325639
  • Carter, D. C., & He, X. M. (1990). Structure of human serum albumin. Science (New York, N.Y.), 249(4966), 302–303. https://doi.org/10.1126/science.2374930
  • Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. Advances in Protein Chemistry, 45, 153–203. https://doi.org/10.1016/s0065-3233(08)60640-3
  • Chang, E. L., Simmers, C., & Knight, D. A. (2010). Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals (Basel, Switzerland), 3(6), 1711–1728. https://doi.org/10.3390/ph3061711
  • Chanphai, P., & Tajmir-Riahi, H. A. (2020). Conjugation of citric acid and gallic acid with serum albumins: Acid binding sites and protein conformation. Journal of Molecular Liquids, 299, 112178. https://doi.org/10.1016/j.molliq.2019.112178
  • Constable, E. C., & Housecroft, C. E. (2019). The early years of 2,2′-bipyridine—A ligand in its own lifetime. Molecules, 24, 3951. https://doi.org/10.3390/molecules24213951
  • Curry, S. (2009). Lessons from the crystallographic analysis of small molecule binding to human serum albumin. Drug Metabolism and Pharmacokinetics, 24(4), 342–357. https://doi.org/10.2133/dmpk.24.342
  • Cusumano, M., Pietro, M. L. D., Giannetto, A., & Vainiglia, P. A. (2007). DNA and RNA noncovalent interaction of platinum(II) polypyridine complexes. Inorganic Chemistry, 46(17), 7148–7153. https://doi.org/10.1021/ic700495x
  • Das, N., & Sen, P. (2018). Structural, functional, and dynamical responses of a protein in a restricted environment imposed by macromolecular crowding. Biochemistry, 57(42), 6078–6089. https://doi.org/10.1021/acs.biochem.8b00599
  • Das, N., & Sen, P. (2020). Shape-dependent macromolecular crowding on the thermodynamics and microsecond conformational dynamics of protein unfolding revealed at the single-molecule level. The Journal of Physical Chemistry. B, 124(28), 5858–5871. https://doi.org/10.1021/acs.jpcb.0c03897
  • Ding, F., Liu, W., Li, N., Zhang, L., & Sun, Y. (2010). Complex of nicosulfuron with human serum albumin: A biophysical study. Journal of Molecular Structure, 975(1–3), 256–264. https://doi.org/10.1515/biolog-2017-0066 https://doi.org/10.1016/j.molstruc.2010.04.033
  • Drissi, M., Benhalima, N., Megrouss, Y., Rachida, R., Chouaih, A., & Hamzaoui, F. (2015). Theoretical and Experimental Electrostatic Potential around the m-Nitrophenol Molecule. Molecules (Basel, Switzerland), 20(3), 4042–4054. https://doi.org/10.3390/molecules20034042
  • Fanali, G., Di Masi, A., Trezza, V., Marino, M., Fasano, M., & Ascenzi, P. (2012). Human serum albumin: From bench to bedside. Molecular Aspects of Medicine, 33(3), 209–290. https://doi.org/10.1016/j.mam.2011.12.002
  • Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., & Ascenzi, P. (2005). The extraordinary ligand binding properties of human serum albumin. IUBMB Life, 57(12), 787–796. https://doi.org/10.1080/15216540500404093
  • Fernandes, L. d P., Silva, J. M. B., Martins, D. O. S., Santiago, M. B., Martins, C. H. G., Jardim, A. C. G., Oliveira, G. S., Pivatto, M., Souza, R. A. C., Franca, E. d F., Deflon, V. M., Machado, A. E. H., & Oliveira, C. G. (2020). Fragmentation study, dual anti-bactericidal and anti-viral effects and molecular docking of cobalt (III) complexes. International Journal of Molecular Sciences, 21(21), 8355. https://doi.org/10.3390/ijms21218355
  • Feroz, S. R., Mohamad, S. B., Bujang, N., Malek, S. N. A., & Tayyab, S. (2012). Multispectroscopic and molecular modeling approach to investigate the interaction of flavokawain B with human serum albumin. Journal of Agricultural and Food Chemistry, 60(23), 5899–5908. https://doi.org/10.1021/jf301139h
  • Graf, N., & Lippard, S. J. (2012). Redox activation of metal-based prodrugs as a strategy for drug delivery. Advanced Drug Delivery Reviews, 64(11), 993–1004. https://doi.org/10.1016/j.addr.2012.01.007
  • Hall, M. D., Failes, T. W., Yamamoto, N., & Hambley, T. W. (2007). Bioreductive activation and drug chaperoning in cobalt pharmaceuticals. Dalton Transactions, 36(36), 3983–3990. https://doi.org/10.1039/b707121c
  • Hambley, T. W. (2007). Developing new metal-based therapeutics: Challenges and opportunities. Dalton Transactions, 43, 4929–4937. https://doi.org/10.1039/B706075K
  • Hatchikian, E. C. (1981). A cobalt porphyrin containing protein reducible by hydrogenase isolated from Desulfovibrio desulfuricans (Norway). Biochemical and Biophysical Research Communications, 103(2), 521–530. https://doi.org/10.1016/0006-291x(81)90483-6
  • He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209–215. https://doi.org/10.1038/358209a0
  • Heffern, M. C., Yamamoto, N., Holbrook, R. J., Eckermann, A. L., & Meade, T. J. (2013). Cobalt derivatives as promising therapeutic agents. Current Opinion in Chemical Biology, 17(2), 189–196. https://doi.org/10.1016/j.cbpa.2012.11.019
  • Heller, G T., Aprile, F A., & Vendruscolo, M. (2017). Methods of probing the interactions between small molecules and disordered proteins. Cellular and Molecular Life Sciences: CMLS, 74(17), 3225–3243. https://doi.org/10.1007/s00018-017-2563-4
  • Hussain, R., Saeed, M., Mehboob, M. Y., Khan, S., Khan, M. U., Adnan, M., Ahmed, M., Iqbal, & Ayub, K. (2020). Density functional theory study of palladium cluster adsorption on a graphene support. RSC Advances, 10(35), 20595–20607. https://doi.org/10.1039/D0RA01059F
  • Ibrahim, N., Ibrahim, H., Kim, S., Nallet, J. P., & Nepveu, F. (2010). Interactions between antimalarial indolone-N-oxide derivatives and human serum albumin. Biomacromolecules, 11(12), 3341–3351. https://doi.org/10.1021/bm100814n
  • Kelly, S. M., & Price, N. C. (2000). The use of circular dichroism in the investigation of protein structure and function. Current Protein & Peptide Science, 1(4), 349–384. https://doi.org/10.2174/1389203003381315
  • Kondori, T., Shahraki, O., Akbarzadeh-T, N., & Aramesh-Boroujeni, Z. (2021). Two novel bipyridine-based cobalt (II) complexes: Synthesis, characterization, molecular docking, DNA-binding and biological evaluation. Journal of Biomolecular Structure & Dynamics, 39(2), 595–615. https://doi.org/10.1080/07391102.2020.1713893
  • Kontoyianni, M., McClellan, L. M., & Sokol, G. S. (2004). Evaluation of docking performance: Comparative data on docking algorithms. Journal of Medicinal Chemistry, 47(3), 558–565. https://doi.org/10.1021/jm0302997
  • Małecki, J. G., Bałanda, M., Groń, T., & Kruszyński, R. (2012). Molecular, spectroscopic, and magnetic properties of cobalt (II) complexes with heteroaromatic N (O)-donor ligands. Structural Chemistry, 23(4), 1219–1232. https://doi.org/10.1007/s11224-012-9948-7
  • Narazaki, R., Maruyama, T., & Otagiri, M. (1997). Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Biochimica et Biophysica Acta (Bba) - Protein Structure and Molecular Enzymology, 1338(2), 275–281. https://doi.org/10.1016/S0167-4838(96)00221-X
  • Peng, X., Wang, X., Qi, W., Su, R., & He, Z. (2016). Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability. Food Chemistry, 192, 178–187. https://doi.org/10.1016/j.foodchem.2015.06.109
  • Peters Jr., T. (1985). Serum albumin. Advances in Protein Chemistry, 37, 161–245. https://doi.org/10.1016/S0065-3233(08)60065-0
  • Petitpas, I., Bhattacharya, A. A., Twine, S., East, M., & Curry, S. (2001). Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. The Journal of Biological Chemistry, 276(25), 22804–22809. https://doi.org/10.1074/jbc.M100575200
  • Petrauskas, V., Maximowitsch, E., & Matulis, D. (2015). Thermodynamics of ion pair formations between charged poly(amino acid)s. The Journal of Physical Chemistry. B, 119(37), 12164–12171. https://doi.org/10.1021/acs.jpcb.5b05767
  • Rao, H., Qi, W., Su, R., He, Z., & Peng, X. (2020). Mechanistic and conformational studies n the interaction of human serum albumin with rhodamine B by NMR, spectroscopic and molecular modeling methods. Journal of Molecular Liquids, 316, 113889. https://doi.org/10.1016/j.molliq.2020.113889
  • Sakurai, Y., Ma, S.-F., Watanabe, H., Yamaotsu, N., Hirono, S., Kurono, Y., Kragh-Hansen, U., & Otagiri, M. (2004). Esterase-like activity of serum albumin: Characterization of its structural chemistry using p-nitrophenyl esters as substrates. Pharmaceutical Research, 21(2), 285–292. https://doi.org/10.1023/B:PHAM.0000016241.84630.06
  • Sekar, G., Haldar, M., Kumar, D. T., Doss, C. G. P., Mukherjee, A., & Chandrasekaran, N. (2017). Exploring the interaction between iron oxide nanoparticles (IONPs) and human serum albumin (HSA): Spectroscopic and docking studies. Journal of Molecular Liquids, 241, 793–800. https://doi.org/10.1016/j.molliq.2017.06.093
  • Silva, D., Cortez, C. M., Cunha-Bastos, J., & Louro, S. R. W. (2004). Methyl parathion interaction with human and bovine serum albumin. Toxicology Letters, 147(1), 53–61. https://doi.org/10.1016/j.toxlet.2003.10.014
  • Sleep, D. (2015). Albumin and its application in drug delivery. Expert Opinion on Drug Delivery, 12(5), 793–812. https://doi.org/10.1517/17425247.2015.993313
  • Sleep, D., Cameron, J., & Evans, L. R. (2013). Albumin as a versatile platform for drug half-life extension. Biochimica et Biophysica Acta, 1830(12), 5526–5534. https://doi.org/10.1016/j.bbagen.2013.04.023
  • Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19–32. https://doi.org/10.1039/B818330A
  • Spackman, M. A., McKinnon, J. J., & Jayatilaka, D. (2008). Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm, 10, 377–388. https://doi.org/10.1039/b715227b
  • Tabassum, S., Asbahy, W. M., Afzal, M., & Arjmand, F. (2012). Synthesis, characterization and interaction studies of copper based drug with Human Serum Albumin (HSA): Spectroscopic and molecular docking investigations . Journal of Photochemistry and Photobiology. B, Biology, 114, 132–139. https://doi.org/10.1016/j.jphotobiol.2012.05.021
  • Thamilarasan, V., Sengottuvelan, N., Sudha, A., Srinivasan, P., & Chakkaravarthi, G. (2016). Cobalt (III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions. Journal of Photochemistry and Photobiology B: Biology, 162, 558–569. https://doi.org/10.1016/j.jphotobiol.2016.06.024
  • Thuery, P., & Zarembowitch, J. (1986). Spin state of cobalt(II) in five- and six-coordinate Lewis base adducts of (Ar,x\r/-ethylenebis(3-carboxysalicylaldiminato))cobalt(II). New spin-crossover complexes. Inorganic Chemistry, 25(12), 2001–2008. https://doi.org/10.1021/ic00232a020
  • Trynda, L. (2004). Paclitaxel–HSA interaction. Binding sites on HSA molecule. Bioorganic & Medicinal Chemistry, 12, 3269–3275. https://doi.org/10.1016/j.bmc.2004.03.073
  • Trynda-Lemiesz, L., Karaczyn, A., Keppler, B. K., & Kozlowski, H. (2000). Studies on the interactions between human serum albumin and trans-indazolium (bisindazole) tetrachlororuthenate(III). Journal of Inorganic Biochemistry, 78(4), 341–346. https://doi.org/10.1016/S0162-0134(00)00062-3
  • Tu, B., Chen, Z. F., Liu, Z. J., Li, R. R., Ouyang, Y., & Hu, Y. J. (2015). Study of the structure-activity relationship of flavonoids based on their interaction with human serum albumin. RSC Advances, 5(89), 73290–73300. https://doi.org/10.1039/C5RA12824B
  • Wu, S. S., Yuan, W. B., Wang, H. Y., Zhang, Q., Liu, M., & Yu, K. B. (2008). Synthesis, crystal structure and interaction with DNA and HSA of (N,N'-dibenzylethane-1,2-diamine) transition metal complexes . Journal of Inorganic Biochemistry, 102(11), 2026–2034. https://doi.org/10.1016/j.jinorgbio.2008.08.005
  • Wu, Z., Yang, Z., Wang, F., Peng, H., Zhang, H., Wang, C., & Wang, K. (2015). V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane and manganese(II), cobalt(II) and copper(II) complexes: Synthesis, crystal structure, DNA-binding properties and antioxidant activities. Journal of Photochemistry and Photobiology B: Biology, 148, 252–261. https://doi.org/10.1016/j.jphotobiol.2015.04.014
  • Xiong, X., He, J., Yang, H., Tang, P., Tang, B., Sun, Q., & Li, H. (2017). Investigation on the interaction of antibacterial drug moxifloxacin hydrochloride with human serum albumin using multi-spectroscopic approaches, molecular docking and dynamical simulation. RSC Adv., 7(77), 48942–48949. https://doi.org/10.1039/C7RA08731D
  • Yang, F., Bian, C., Zhu, L., Zhao, G., Huang, Z., & Huang, M. (2007). Effect of human serum albumin on drug metabolism: Structural evidence of esterase activity of human serum albumin. Journal of Structural Biology, 157(2), 348–355. https://doi.org/10.1016/j.jsb.2006.08.015
  • Yousuf, I., Arjmand, F., Tabassum, S., Toupet, L., Khan, R. A., & Siddiqui, M. A. (2015). Mechanistic insights into a novel chromone-appended Cu(II) anticancer drug entity: In vitro binding profile with DNA/RNA substrates and cytotoxic activity against MCF-7 and HepG2 cancer cells. Dalton Transactions (Cambridge, England: 2003), 44(22), 10330–10342. https://doi.org/10.1039/c5dt00770d
  • Yousuf, I., Usman, M., Ahmad, M., Tabassum, S., & Arjmand, F. (2018). Single X-ray crystal structure, DFT studies and topoisomerase I inhibition activity of a tailored ionic Ag(I) nalidixic acid–piperazinium drug entity specific for pancreatic cancer cells. New Journal of Chemistry, 42(1), 506–519. https://doi.org/10.1039/C7NJ03602G
  • Zhang, J., Gao, X., Huang, J., & Wang, H. (2020). Probing the interaction between human serum albumin and 9-hydroxyphenanthrene: A spectroscopic and molecular socking study. ACS Omega, 5(27), 16833–16840. https://doi.org/10.1021/acsomega.0c02031
  • Zsila, F. (2013a). Subdomain IB is the third major drug binding region of human serum albumin: Toward the three-sites model. Molecular Pharmaceutics, 10(5), 1668–1682. https://doi.org/10.1021/mp400027q
  • Zsila, F. (2013b). Circular dichroism spectroscopic detection of ligand binding induced subdomain IB specific structural adjustment of human serum albumin. The Journal of Physical Chemistry. B, 117(37), 10798–10806. https://doi.org/10.1021/jp4067108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.