826
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Finding potent inhibitors against SARS-CoV-2 main protease through virtual screening, ADMET, and molecular dynamics simulation studies

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 6556-6568 | Received 02 Dec 2020, Accepted 01 Feb 2021, Published online: 08 Mar 2021

References

  • Schrödinger Release 2020-4: Glide. (2020). Schrödinger, LLC.
  • Schrödinger Release 2020-4: LigPrep. (2020). Schrödinger, LLC.
  • Schrödinger Release 2020-4: Maestro. (2020). Schrödinger, LLC.
  • Schrödinger Release 2020-4: QikProp. (2020). Schrödinger, LLC.
  • Aanouz, I., Belhassan, A., El-Khatabi, K., Lakhlifi, T., El-Ldrissi, M., & Bouachrine, M. (2020). Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure and Dynamics, 1–9.  https://doi.org/10.1080/07391102.2020.1758790
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Benigni, R., & Bossa, C. (2011). Mechanisms of chemical carcinogenicity and mutagenicity: A review with implications for predictive toxicology. Chemical Reviews, 111(4), 2507–2536. https://doi.org/10.1021/cr100222q
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1758788
  • Case, D. A., I. Y., Ben-Shalom, S. R., Brozell, D. S., Cerutti, T. E., Cheatham, I., V. W. D., Cruzeiro, T. A., Darden, R. E., Duke, D., Ghoreishi, M. K., Gilson, H., Gohlke, A. W., Goetz, D., Greene, R., Harris, N., Homeyer, Y., Huang, S., Izadi, A., Kovalenko, T., Kurtzman, T. S., Lee, S., LeGrand, P., Li, C., Lin, J., Liu, T., Luchko, R., Luo, D. J., Mermelstein, K. M., Merz, Y., Miao, G., Monard, C., Nguyen, H., Nguyen, I., Omelyan, A., Onufriev, F., Pan, R., Qi, D. R., Roe, A., Roitberg, C., Sagui, S., Schott-Verdugo, J., Shen, C. L., Simmerling, J., Smith, R., SalomonFerrer, J., Swails, R. C., Walker, J., Wang, H., Wei, R. M., Wolf, X., Wu, L., & Xiao Kollman, D. M. Y. a. P. A. (2018). AMBER 2018. University of California.
  • Chang, C-k., Hou, M.-H., Chang, C.-F., Hsiao, C.-D., & Huang, T-h. (2014). The SARS coronavirus nucleocapsid protein-forms and functions. Antiviral Research, 103, 39–50. https://doi.org/10.1016/j.antiviral.2013.12.009
  • Chen, Y. W., Yiu, C.-P B., & Wong, K.-Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. https://doi.org/10.12688/f1000research.22457.2
  • Coelho, C., Gallo, G., Campos, C. B., Hardy, L., & Würtele, M. (2020). Biochemical screening for SARS-CoV-2 main protease inhibitors. PloS One, 15(10), e0240079 https://doi.org/10.1371/journal.pone.0240079
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics , 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (2020). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics, 1–18.  https://doi.org/10.1080/07391102.2020.1763201
  • Elfiky, A. A. (2020). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1761882
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1758791
  • Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Journal of Biomolecular Structure and Dynamics, 1–7. https://doi.org/10.1080/07391102.2020.1760136
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Ghahremanpour, M. M., Tirado-Rives, J., Deshmukh, M., Ippolito, J. A., Zhang, C.-H., Cabeza de Vaca, I., Liosi, M.-E., Anderson, K. S., & Jorgensen, W. L. (2020). Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Medicinal Chemistry Letters, 11(12), 2526–2533. https://doi.org/10.1021/acsmedchemlett.0c00521
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. Journal of Molecular Biology, 330(4), 891–913. https://doi.org/10.1016/S0022-2836(03)00610-7
  • Gotz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Guarner, J. (2020). Three emerging coronaviruses in two decades: the story of SARS, MERS, and now COVID-19, Oxford University Press US.
  • Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1751300
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Han, Y., Wang, Z., Ren, J., Wei, Z., & Li, J. (2020). Potential inhibitors for the novel coronavirus (SARS-CoV-2). Briefings in Bioinformatics, 1–7. https://doi.org/10.1093/bib/bbaa209
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hegyi, A., & Ziebuhr, J. (2002). Conservation of substrate specificities among coronavirus main proteases. The Journal of General Virology, 83(Pt 3), 595–599. https://doi.org/10.1099/0022-1317-83-3-595
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1761883
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–285. https://doi.org/10.1038/s41586-020-2223-y
  • Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu, Y., Zhu, C., Hu, T., Du, X., Duan, Y., Yu, J., Yang, X., Yang, X., Yang, K., Liu, X., Guddat, L. W., Xiao, G., Zhang, L., Yang, H., & Rao, Z. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology, 27(6), 529–532. https://doi.org/10.1038/s41594-020-0440-6
  • Jonniya, N. A., & Kar, P. (2020). Investigating specificity of the anti-hypertensive inhibitor WNK463 against With-No-Lysine kinase family isoforms via multiscale simulations. Journal of Biomolecular Structure & Dynamics, 38(5), 1306–1321. https://doi.org/10.1080/07391102.07392019.01602079
  • Jonniya, N. A., Sk, M. F., & Kar, P. (2019). Investigating Phosphorylation-Induced Conformational Changes in WNK1 Kinase by Molecular Dynamics Simulations. ACS Omega, 4(17), 17404–17416. https://doi.org/10.1021/acsomega.9b02187
  • Jonniya, N. A., Sk, M. F., & Kar, P. (2020). A comparative study of structural and conformational properties of WNK kinase isoforms bound to an inhibitor: Insights from molecular dynamic simulations. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1827035
  • Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Z., Zhou, Z., Chen, Q., Yan, Y., Zhang, C., Shan, H., & Chen, S. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica. B, 10(7), 1228–1238. https://doi.org/10.1016/j.apsb.2020.04.009
  • Kar, P., & Knecht, V. (2012). Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir. Journal of Computer-Aided Molecular Design, 26(2), 215–232. https://doi.org/10.1007/s10822-012-9550-5
  • Kar, P., Lipowsky, R., & Knecht, V. (2011). Importance of polar solvation for cross-reactivity of antibody and its variants with steroids. The Journal of Physical Chemistry. B, 115(23), 7661–7669. https://doi.org/10.1021/jp201538t
  • Kar, P., Lipowsky, R., & Knecht, V. (2013). Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. The Journal of Physical Chemistry. B, 117(19), 5793–5805. https://doi.org/10.1021/jp3085292
  • Kar, P., Seel, M., Hansmann, U. H., & Höfinger, S. (2007). Dispersion Terms and Analysis of size- and charge dependence in an enhanced Poisson-Boltzmann approach. The Journal of Physical Chemistry. B, 111(30), 8910–8918. https://doi.org/10.1021/jp072302u
  • Kar, P., Wei, Y., Hansmann, U. H., & Höfinger, S. (2007). Systematic study of the boundary composition in Poisson Boltzmann calculations. Journal of Computational Chemistry, 28(16), 2538–2544. https://doi.org/10.1002/jcc.20698
  • Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1753577
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1751298
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Liebler, D. C., & Guengerich, F. P. (2005). Elucidating mechanisms of drug-induced toxicity. Nature Reviews. Drug Discovery, 4(5), 410–420. https://doi.org/10.1038/nrd1720
  • Liu, K., Tang, M., Liu, Q., Han, X., Jin, H., Zhu, H., Li, Y., He, L., Ji, H., & Zhou, B. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1), 1–4. https://doi.org/10.1038/s41421-019-0132-8
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Memczak, H., Lauster, D., Kar, P., Di Lella, S., Volkmer, R., Knecht, V., Herrmann, A., Ehrentreich-Förster, E., Bier, F. F., & Stöcklein, W. F. (2016). Anti-hemagglutinin antibody derived lead peptides for inhibitors of influenza virus binding. PloS One, 11(7), e0159074 https://doi.org/10.1371/journal.pone.0159074
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–6. https://doi.org/10.1080/07391102.2020.1752802
  • Olsson, M. H., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa Predictions. J Chem Theory Comput, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Paine, S. W., Barton, P., Bird, J., Denton, R., Menochet, K., Smith, A., Tomkinson, N. P., & Chohan, K. K. (2010). A rapid computational filter for predicting the rate of human renal clearance. Journal of Molecular Graphics and Modelling, 29(4), 529–537. https://doi.org/10.1016/j.jmgm.2010.10.003
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Price, D. J., & Brooks, C. L. III, (2004). A modified TIP3P water potential for simulation with Ewald summation. The Journal of Chemical Physics, 121(20), 10096–10103. https://doi.org/10.1063/1.1808117
  • Roe, D. R., & Cheatham, T. E. III, (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roy, R., Ghosh, B., & Kar, P. (2020). Investigating Conformational Dynamics of Lewis Y Oligosaccharides and Elucidating Blood Group Dependency of Cholera Using Molecular Dynamics. ACS Omega, 5(8), 3932–3942. https://doi.org/10.1021/acsomega.9b03398
  • Roy, R., Mishra, A., Poddar, S., Nayak, D., & Kar, P. (2020). Investigating the mechanism of recognition and structural dynamics of nucleoprotein-RNA complex from Peste des petits ruminants virus via Gaussian accelerated molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1838327
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Salonen, J. S., Nyman, L., Boobis, A. R., Edwards, R. J., Watts, P., Lake, B. G., Price, R. J., Renwick, A. B., Gómez-Lechón, M.-J., Castell, J. V., Ingelman-Sundberg, M., Hidestrand, M., Guillouzo, A., Corcos, L., Goldfarb, P. S., Lewis, D. F. V., Taavitsainen, P., & Pelkonen, O. (2003). Comparative studies on the cytochrome p450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 31(9), 1093–1102. https://doi.org/10.1124/dmd.31.9.1093
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Shi, Y., Zhang, X., Mu, K., Peng, C., Zhu, Z., Wang, X., Yang, Y., Xu, Z., & Zhu, W. (2020). D3Targets-2019-nCoV: A webserver for predicting drug targets and for multi-target and multi-site based virtual screening against COVID-19. Acta Pharmaceutica Sinica. B, 10(7), 1239–1248. https://doi.org/10.1016/j.apsb.2020.04.006
  • Singh, S., Sk, M. F., Sonawane, A., Kar, P., & Sadhukhan, S. (2020). Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA‐dependent RNA polymerase (RdRp) inhibition: An in-silico analysis. Journal of Biomolecular Structure and Dynamics, 1–16.  https://doi.org/10.1080/07391102.2020.1796810
  • Sk, M. F., Jonniya, N. A., & Kar, P. (2020). Exploring the energetic basis of binding of currently used drugs against HIV-1 subtype CRF01_AE protease via molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–18. https://doi.org/10.1080/07391102.2020.1794965
  • Sk, M. F., Jonniya, N. A., Roy, R., Poddar, S., & Kar, P. (2020). Computational investigation of structural dynamics of SARS-CoV-2 methyltransferase-stimulatory factor heterodimer nsp16/nsp10 bound to the cofactor SAM. Frontiers in Molecular Biosciences, 7, 590165. https://doi.org/10.3389/fmolb.2020.590165
  • Sk, M. F., Roy, R., Jonniya, N. A., Poddar, S., & Kar, P. (2020). Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure and Dynamics, 1–21. https://doi.org/10.1080/07391102.2020.1768149
  • Sk, M. F., Roy, R., & Kar, P. (2021). Exploring the potency of currently used drugs against HIV-1 protease of subtype D variant by using multiscale simulations. Journal of Biomolecular Structure & Dynamics, 39(3), 988–1003. https://doi.org/10.1080/07391102.07392020.01724196
  • Srimai, V., Ramesh, M., Parameshwar, K. S., & Parthasarathy, T. (2013). Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives. Medicinal Chemistry Research, 22(11), 5314–5323. https://doi.org/10.1007/s00044-013-0532-5
  • Thurakkal, L., Singh, S., Roy, R., Kar, P., Sadhukhan, S., & Porel, M. (2020). An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets. Chemical Physics Letters, 763, 138193.
  • Ton, A. T., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8), 2000028. https://doi.org/10.1002/minf.202000028
  • Umesh K. D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 1–9.  https://doi.org/10.1080/07391102.2020.1763202
  • Wang, Z., Hop, C. E., Leung, K. H., & Pang, J. (2000). Determination of in vitro permeability of drug candidates through a Caco‐2 cell monolayer by liquid chromatography/tandem mass spectrometry. Journal of Mass Spectrometry, 35(1), 71–76. https://doi.org/10.1002/(SICI)1096-9888(200001)35:1<71::AID-JMS915>3.0.CO;2-5
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Woo, P. C., Huang, Y., Lau, S. K., Tsoi, H. w., & Yuen, K. y. (2005). In silico analysis of ORF1ab in coronavirus HKU1 genome reveals a unique putative cleavage site of coronavirus HKU1 3C-like protease. Microbiology and Immunology, 49(10), 899–908. https://doi.org/10.1111/j.1348-0421.2005.tb03681.x
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., & Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China. Life Sciences, 63(3), 457–460. https://doi.org/10.1007/s11427-020-1637-5
  • Yuen, K.-S., Ye, Z.-W., Fung, S.-Y., Chan, C.-P., & Jin, D.-Y. (2020). SARS-CoV-2 and COVID-19: The most important research questions. Cell & Bioscience, 10(1), 1–5. https://doi.org/10.1186/s13578-020-00404-4
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhang, L., McHale, C. M., Greene, N., Snyder, R. D., Rich, I. N., Aardema, M. J., Roy, S., Pfuhler, S., & Venkatactahalam, S. (2014). Emerging approaches in predictive toxicology. Environmental and Molecular Mutagenesis, 55(9), 679–688. https://doi.org/10.1002/em.21885

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.