617
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

N-substituted benzenesulfonamide compounds: DNA binding properties and molecular docking studies

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7424-7438 | Received 02 Dec 2020, Accepted 25 Feb 2021, Published online: 11 Mar 2021

References

  • Anjomshoa, M., Fatemi, S. J., Torkzadeh-Mahani, M., & Hadadzadeh, H. (2014). DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 511–520. https://doi.org/10.1016/j.saa.2014.02.048
  • Arabzadeh, A., Bathaie, S. Z., Farsam, H., Amanlou, M., Saboury, A. A., Shockravi, A., & Moosavi-Movahedi, A. A. (2002). Studies on mechanism of 8-methoxypsoralen–DNA interaction in the dark. International Journal of Pharmaceutics, 237(1–2), 47–55. https://doi.org/10.1016/s0378-5173(02)00020-0
  • Basak, D., & Ray, D. (2020). Metal ion substitution and aldehyde exchange for CuII4 aggregates from two types of piperazine-based Schiff base ligands: Synthesis, X-ray structures, magnetic studies and theoretical validation. Inorganica Chimica Acta, 503, 119439. https://doi.org/10.1016/j.ica.2020.119439
  • Bathaie, S. Z., Bolhasani, A., Hoshyar, R., Ranjbar, B., Sabouni, F., & Moosavi-Movahedi, A. A. (2007). Interaction of saffron carotenoids as anticancer compounds with ctDNA, oligo (dG.dC)15, and oligo (dA.dT)15. DNA and Cell Biology, 26(8), 533–540. https://doi.org/10.1089/dna.2007.0598
  • Bera, R., Sahoo, B. K., Ghosh, K. S., & Dasgupta, S. (2008). Studies on the interaction of isoxazolcurcumin with calf thymus DNA. International Journal of Biological Macromolecules, 42(1), 14–21. https://doi.org/10.1016/j.ijbiomac.2007.08.010
  • Boer, D. R., Canals, A., & Coll, M. (2009). DNA-binding drugs caught in action: The latest 3D pictures of drug–DNA complexes. Dalton Transactions, 3, 399–414.
  • Das, D., Sahu, N., Roy, S., Dutta, P., Mondal, S., Torres, E. L., & Sinha, C. (2015). The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 560–568. https://doi.org/10.1016/j.saa.2014.08.034
  • Davenport, D. (2012). The war against bacteria: How were sulphonamide drugs used by Britain during World War II? Medical Humanities, 38(1), 55–58. https://doi.org/10.1136/medhum-2011-010024
  • Dehghani Sani, F., Shakibapour, N., Beigoli, S., Sadeghian, H., Hosainzadeh, M., & Chamani, J. (2018). Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations. Journal of Luminescence, 203(June), 599–608. https://doi.org/10.1016/j.jlumin.2018.06.083
  • Dixit, R. B., Patel, T. S., Vanparia, S. F., Kunjadiya, A. P., Keharia, H. R., & Dixit, B. C. (2011). DNA-binding interaction studies of microwave assisted synthesized sulfonamide substituted 8-hydroxyquinoline derivatives. Scientia Pharmaceutica, 79(2), 293–308. https://doi.org/10.3797/scipharm.1102-16
  • Doğan, S., Tümay, S. O., Mutlu Balci, C., YeŞİlot, S., & BeŞlİ, S. (2020). Synthesis of new cyclotriphosphazene derivatives bearing Schiff bases and their thermal and absorbance properties. Turkish Journal of Chemistry, 44(1), 31–47. https://doi.org/10.3906/kim-1905-60
  • Drews, J. (2000). Drug discovery: A historical perspective. Science (New York, N.Y.), 287(5460), 1960–1964. https://doi.org/10.1126/science.287.5460.1960
  • Durgun, M., Turkmen, H., Ceruso, M., & Supuran, C. T. (2016). Synthesis of 4-sulfamoylphenyl-benzylamine derivatives with inhibitory activity against human carbonic anhydrase isoforms I, II, IX and XII. Bioorganic & Medicinal Chemistry, 24(5), 982–988. https://doi.org/10.1016/j.bmc.2016.01.020
  • Formica, M., Favi, G., Fusi, V., Giorgi, L., Mantellini, F., & Micheloni, M. (2018). Synthesis and study of three hydroxypyrazole-based ligands: A ratiometric fluorescent sensor for Zn(II). Journal of Luminescence, 195, 193–200. https://doi.org/10.1016/j.jlumin.2017.11.018
  • García-Giménez, J. L., Hernández-Gil, J., Martínez-Ruíz, A., Castiñeiras, A., Liu-González, M., Pallardó, F. V., Borrás, J., & Alzuet Piña, G. (2013). DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides. Journal of Inorganic Biochemistry, 121, 167–178. https://doi.org/10.1016/j.jinorgbio.2013.01.003
  • Golcu, A., Tumer, M., Demirelli, H., & Wheatley, R. A. (2005). Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: Synthesis, characterization, properties and biological activity. Inorganica Chimica Acta, 358(6), 1785–1797. https://doi.org/10.1016/j.ica.2004.11.026
  • Gözel, A., Kose, M., Karakaş, D., Atabey, H., McKee, V., & Kurtoglu, M. (2014). Spectral, structural and quantum chemical computational and dissociation constant studies of a novel azo-enamine tautomer. Journal of Molecular Structure, 1074, 449–456. https://doi.org/10.1016/j.molstruc.2014.06.033
  • Güngör, S. A., Tümer, M., Köse, M., & Erkan, S. (2020). Benzaldehyde derivatives with functional propargyl groups as α-glucosidase inhibitors. Journal of Molecular Structure, 1206, 127780.
  • Henry, R. J. (1943). The mode of action of sulfonamides. Bacteriological Reviews, 7(4), 175–262. https://doi.org/10.1128/BR.7.4.175-262.1943
  • Horiuchi, H. (2002). Molecular structure of nuclei. The European Physical Journal A, 15(1–2), 131–133. https://doi.org/10.1140/epja/i2001-10240-x
  • Howe-Grant, M., Lippard, S. J., Wu, K. C., & Bauer, W. R. (1976). Binding of platinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs. Biochemistry, 15(19), 4339–4346. https://doi.org/10.1021/bi00664a031
  • Jaiswal, M., Khadikar, P. V., & Supuran, C. T. (2004). Topological modeling of lipophilicity, diuretic activity, and carbonic inhibition activity of benzene sulfonamides: A molecular connectivity approach. Bioorganic & Medicinal Chemistry Letters, 14(22), 5661–5666. https://doi.org/10.1016/j.bmcl.2004.08.051
  • Jamshidvand, A., Sahihi, M., Mirkhani, V., Moghadam, M., Mohammadpoor-Baltork, I., Tangestaninejad, S., Amiri Rudbari, H., Kargar, H., Keshavarzi, R., & Gharaghani, S. (2018). Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: Influence of substitutions on DNA-binding. Journal of Molecular Liquids, 253, 61–71. https://doi.org/10.1016/j.molliq.2018.01.029
  • Kamshad, M., Jahanshah Talab, M., Beigoli, S., Sharifirad, A., & Chamani, J. (2019). Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. Journal of Biomolecular Structure and Dynamics, 37(8), 2030–2040. https://doi.org/10.1080/07391102.2018.1475258
  • Köse, M., Kurtoglu, N., Gümüşsu, Ö., Tutak, M., McKee, V., Karakaş, D., & Kurtoglu, M. (2013). Synthesis, characterization and antimicrobial studies of 2-{(E)-[(2-hydroxy-5-methylphenyl)imino]methyl}-4-[(E)-phenyldiazenyl]phenol as a novel azo-azomethine dye. Journal of Molecular Structure, 1053, 89–99. https://doi.org/10.1016/j.molstruc.2013.09.013
  • Krátký, M., Vinšová, J., Volková, M., Buchta, V., Trejtnar, F., & Stolaříková, J. (2012). Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. European Journal of Medicinal Chemistry, 50, 433–440. https://doi.org/10.1016/j.ejmech.2012.01.060
  • Marchetti, F., Pettinari, C., Di Nicola, C., Tombesi, A., & Pettinari, R. (2019). Coordination chemistry of pyrazolone-based ligands and applications of their metal complexes. Coordination Chemistry Reviews, 401, 213069. https://doi.org/10.1016/j.ccr.2019.213069
  • Marchetti, F., Pettinari, R., & Pettinari, C. (2015). Recent advances in acylpyrazolone metal complexes and their potential applications. Coordination Chemistry Reviews, 303, 1–31. https://doi.org/10.1016/j.ccr.2015.05.003
  • Mokaberi, P., Babayan-Mashhadi, F., Amiri Tehrani Zadeh, Z., Saberi, M. R., & Chamani, J. (2020). Analysis of the interaction behavior between nano-curcumin and two human serum proteins: Combining spectroscopy and molecular stimulation to understand protein–protein interaction. Journal of Biomolecular Structure and Dynamics, 0(0), 1–20.
  • Mondal, S., Bhanja, A. K., Ojha, D., Mondal, T. K., Chattopadhyay, D., & Sinha, C. (2015). Fluorescence sensing and intracellular imaging of Al3+ ions by using naphthalene based sulfonamide chemosensor: Structure, computation and biological studies. RSC Advances, 5(90), 73626–73638. https://doi.org/10.1039/C5RA11548E
  • Pahontu, E., Julea, F., Rosu, T., Purcarea, V., Chumakov, Y., Petrenco, P., & Gulea, A. (2015). Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones. Journal of Cellular and Molecular Medicine, 19(4), 865–878. https://doi.org/10.1111/jcmm.12508
  • Pasternack, R. F., Caccam, M., Keogh, B., Stephenson, T. A., Williams, A. P., & Gibbs, E. J. (1991). Long-range fluorescence quenching of ethidium ion by cationic porphyrins in the presence of DNA. Journal of the American Chemical Society, 113(18), 6835–6840. https://doi.org/10.1021/ja00018a019
  • Psomas, G. (2008). Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties. Journal of Inorganic Biochemistry, 102(9), 1798–1811. https://doi.org/10.1016/j.jinorgbio.2008.05.012
  • Qais, F. A., Abdullah, K. M., Alam, M. M., Naseem, I., & Ahmad, I. (2017). Interaction of capsaicin with calf thymus DNA: A multi-spectroscopic and molecular modelling study. International Journal of Biological Macromolecules, 97, 392–402. https://doi.org/10.1016/j.ijbiomac.2017.01.022
  • Rajendiran, N., & Thulasidhasan, J. (2015). Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 183–191. https://doi.org/10.1016/j.saa.2015.01.127
  • Rashidipour, S., Naeeminejad, S., & Chamani, J. (2016). Study of the interaction between DNP and DIDS with human hemoglobin as binary and ternary systems: Spectroscopic and molecular modeling investigation. Journal of Biomolecular Structure & Dynamics, 34(1), 57–77. https://doi.org/10.1080/07391102.2015.1009946
  • Sehlstedt, U., Nordén, B., Kim, S. K., Carter, P., Goodisman, J., Dabrowiak, J. C., & Vollano, J. F. (1994). Interaction of cationic porphyrins with DNA. Biochemistry, 33(2), 417–426. https://doi.org/10.1021/bi00168a005
  • Shakibapour, N., Dehghani Sani, F., Beigoli, S., Sadeghian, H., & Chamani, J. (2019). Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: Binary and ternary approaches. Journal of Biomolecular Structure and Dynamics, 37(2), 359–371. https://doi.org/10.1080/07391102.2018.1427629
  • Tajudeen, S. S., & Kannappan, G. (2016). Indian journal of advances in chemical science Schiff base – copper (II) complexes: Synthesis, spectral studies and anti-tubercular and antimicrobial activity. Indian Journal of Advances in Chemical Science, 4(1), 40–48.
  • Tumer, F., Golcu, A., Tumer, M., Bulut, S., & Kose, M. (2017). Multifunctional metallo porphyrin-imine conjugates: Photophysical, electrochemical, DNA binding and SOD enzyme mimetic studies. Journal of Photochemistry and Photobiology A: Chemistry, 346, 236–248. https://doi.org/10.1016/j.jphotochem.2017.06.010
  • Vijayalakshmi, R., Kanthimathi, M., Subramanian, V., & Nair, B. U. (2000). Interaction of DNA with [Cr (Schi ¡ base) (H2O)2] ClO4. Science, 1475, 157–162.
  • Wang, J., Zhang, X., Liu, H. B., Zhang, D., Nong, H., Wu, P., Chen, P., & Li, D. (2020). Aggregation induced emission active fluorescent sensor for the sensitive detection of Hg2+ based on organic–inorganic hybrid mesoporous material. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227, 117585. https://doi.org/10.1016/j.saa.2019.117585
  • Wei, Z. L., Wang, L., Guo, S. Z., Zhang, Y., & Dong, W. K. (2019). A high-efficiency salamo-based copper(II) complex double-channel fluorescent probe. RSC Advances, 9(70), 41298–41304. https://doi.org/10.1039/C9RA09017G
  • Xing, L., Zheng, X., Sun, W., Yuan, H., Hu, L., & Yan, Z. (2018). UV–vis spectral property of a multi-hydroxyl Schiff-base derivative and its colorimetric response to some special metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 203, 455–460. https://doi.org/10.1016/j.saa.2018.06.015
  • Yildiz, M., Ünver, H., Erdener, D., & Iskeleli, N. O. (2010). Spectroscopic studies and crystal structure of 4-(2-hydroxy-3-methoxybenzylideneamino)-N-(5-methylisoxazol-3-yl) benzenesulfonamide. Journal of Chemical Crystallography, 40(8), 691–695. https://doi.org/10.1007/s10870-010-9723-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.