410
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Active site dynamics and catalytic mechanism in arabinan hydrolysis catalyzed by GH43 endo-arabinanase from QM/MM molecular dynamics simulation and potential energy surface

, , , , , , & ORCID Icon show all
Pages 7439-7449 | Received 06 Sep 2020, Accepted 26 Feb 2021, Published online: 10 Mar 2021

References

  • Agirre, J. (2017). Strategies for carbohydrate model building, refinement and validation. Acta Crystallographica. Section D, Structural Biology, 73(Pt 2), 171–186. https://doi.org/10.1107/S2059798316016910
  • Alhassid, A., Ben-David, A., Tabachnikov, O., Libster, D., Naveh, E., Zolotnitsky, G., Shoham, Y., & Shoham, G. (2009). Crystal structure of an inverting GH 43 1,5-alpha-L-arabinanase from Geobacillus stearothermophilus complexed with its substrate. The Biochemical Journal, 422(1), 73–82. https://doi.org/10.1042/BJ20090180
  • Barnett, C. B., & Naidoo, K. J. (2010). Ring puckering: A metric for evaluating the accuracy of AM1, PM3, PM3CARB-1, and SCC-DFTB carbohydrate QM/MM simulations. The Journal of Physical Chemistry. B, 114(51), 17142–17154. https://doi.org/10.1021/jp107620h
  • Benedek, Z., Papp, M., Oláh, J., & Szilvási, T. (2020). Demonstrating the direct relationship between hydrogen evolution reaction and catalyst deactivation in synthetic Fe nitrogenases. ACS Catalysis, 10(21), 12555–12568. https://doi.org/10.1021/acscatal.0c02315
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217. https://doi.org/10.1002/jcc.540040211
  • Brooks, C. L., III, & Karplus, M. (1983). Deformable stochastic boundaries in molecular dynamics. Journal of Chemical Physics, 79(12), 6312–6325. https://doi.org/10.1063/1.445724
  • Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research, 37(Database issue), D233–D238. https://doi.org/10.1093/nar/gkn663
  • Cui, Q., Elstner, M., Kaxiras, E., Frauenheim, T., & Karplus, M. (2001). A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. The Journal of Physical Chemistry B, 105(2), 569–585. https://doi.org/10.1021/jp0029109
  • de Sanctis, D., Inacio, J. M., Lindley, P. F., de Sa-Nogueira, I., & Bento, I. (2010). New evidence for the role of calcium in the glycosidase reaction of GH43 arabinanases. The FEBS Journal, 277(21), 4562–4574. https://doi.org/10.1111/j.1742-4658.2010.07870.x
  • Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., & Seifert, G. (1998). Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review B, 58(11), 7260–7268. https://doi.org/10.1103/PhysRevB.58.7260
  • Field, M. J., Bash, P. A., & Karplus, M. (1990). A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. Journal of Computational Chemistry, 11(6), 700–733. https://doi.org/10.1002/jcc.540110605
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M. … Fox, D. J. (2009). Gaussian 09, Revision A.02. Gaussian, Inc.
  • Fujimoto, Z., Ichinose, H., Maehara, T., Honda, M., Kitaoka, M., & Kaneko, S. (2010). Crystal structure of an Exo-1,5-{alpha}-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. The Journal of Biological Chemistry, 285(44), 34134–34143. https://doi.org/10.1074/jbc.M110.164251
  • Glendening, E., Reed, A., Carpenter, J., & Weinhold, F. NBO Version 3.1.
  • Goddard-Borger, E. D., Carapito, R., Jeltsch, J. M., Phalip, V., Stick, R. V., & Varrot, A. (2011). α-L-arabinofuranosylated pyrrolidines as arabinanase inhibitors. Chemical Communications, 47(34), 9684–9686. https://doi.org/10.1039/c1cc13675e
  • Gráczer, É., Szimler, T., Garamszegi, A., Konarev, P. V., Lábas, A., Oláh, J., Palló, A., Svergun, D. I., Merli, A., Závodszky, P., Weiss, M. S., & Vas, M. (2016). Dual role of the active site residues of Thermus thermophilus 3-isopropylmalate dehydrogenase: Chemical catalysis and domain closure. Biochemistry, 55(3), 560–574. https://doi.org/10.1021/acs.biochem.5b00839
  • Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. https://doi.org/10.1063/1.3382344
  • Grimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7), 1456–1465. https://doi.org/10.1002/jcc.21759
  • Hermann, J. C., Hensen, C., Ridder, L., Mulholland, A. J., & Höltje, H.-D. (2005). Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Journal of the American Chemical Society, 127(12), 4454–4465. https://doi.org/10.1021/ja044210d
  • Jitonnom, J., & Hannongbua, S. (2018). Theoretical study of the arabinan hydrolysis by an inverting GH43 arabinanase. Molecular Simulation, 44(8), 631–637. https://doi.org/10.1080/08927022.2017.1422212
  • Jitonnom, J., Ketudat-Cairns, J. R., & Hannongbua, S. (2018). QM/MM modeling of the hydrolysis and transfructosylation reactions of fructosyltransferase from Aspergillus japonicas, an enzyme that produces prebiotic fructooligosaccharide. Journal of Molecular Graphics & Modelling, 79, 175–184. https://doi.org/10.1016/j.jmgm.2017.11.010
  • Jitonnom, J., Lee, V. S., Nimmanpipug, P., Rowlands, H. A., & Mulholland, A. J. (2011). Quantum mechanics/molecular mechanics modeling of substrate-assisted catalysis in family 18 chitinases: Conformational changes and the role of Asp142 in catalysis in ChiB. Biochemistry, 50(21), 4697–4711. https://doi.org/10.1021/bi101362g
  • Jitonnom, J., Limb, M. A., & Mulholland, A. J. (2014). QM/MM free-energy simulations of reaction in Serratia marcescens chitinase B reveal the protonation state of Asp142 and the critical role of Tyr214. The Journal of Physical Chemistry. B, 118(18), 4771–4783. https://doi.org/10.1021/jp500652x
  • Jitonnom, J., Mujika, J. I., van der Kamp, M. W., & Mulholland, A. J. (2017). Quantum mechanics/molecular mechanics simulations identify the ring-opening mechanism of creatininase. Biochemistry, 56(48), 6377–6388. https://doi.org/10.1021/acs.biochem.7b01032
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13(8), 1011–1021. https://doi.org/10.1002/jcc.540130812
  • Labas, A., Szabo, E., Mones, L., & Fuxreiter, M. (2013). Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1834(5), 908–917. https://doi.org/10.1016/j.bbapap.2013.01.005
  • Lence, E., van der Kamp, M. W., González-Bello, C., & Mulholland, A. J. (2018). QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes. Organic & Biomolecular Chemistry, 16(24), 4443–4455. https://doi.org/10.1039/c8ob00066b
  • Lu, X., Fang, D., Ito, S., Okamoto, Y., Ovchinnikov, V., & Cui, Q. (2016). QM/MM free energy simulations: Recent progress and challenges. Molecular Simulation, 42(13), 1056–1078. https://doi.org/10.1080/08927022.2015.1132317
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry. B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • Nurizzo, D., Turkenburg, J. P., Charnock, S. J., Roberts, S. M., Dodson, E. J., McKie, V. A., Taylor, E. J., Gilbert, H. J., & Davies, G. J. (2002). Cellvibrio japonicus alpha-L-arabinanase 43A has a novel five-blade beta-propeller fold. Nature Structural Biology, 9(9), 665–668. https://doi.org/10.1038/nsb835
  • Olsson, M. H., Sondergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Park, J.-M., Jang, M.-U., Kang, J.-H., Kim, M.-J., Lee, S.-W., Song, Y. B., Shin, C.-S., Han, N. S., & Kim, T.-J. (2012). Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13. Journal of Microbiology (Seoul, Korea), 50(6), 1041–1046. https://doi.org/10.1007/s12275-012-2489-3
  • Proctor, M. R., Taylor, E. J., Nurizzo, D., Turkenburg, J. P., Lloyd, R. M., Vardakou, M., Davies, G. J., & Gilbert, H. J. (2005). Tailored catalysts for plant cell-wall degradation: Redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2697–2702. https://doi.org/10.1073/pnas.0500051102
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Seabra, G. d. M., Walker, R. C., Elstner, M., Case, D. A., & Roitberg, A. E. (2007). Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the Amber Molecular Dynamics Package. The Journal of Physical Chemistry. A, 111(26), 5655–5664. https://doi.org/10.1021/jp070071l
  • Song, Z., Yue, Y., Feng, S., Sun, H., Li, Y., Xu, F., Zhang, Q., & Wang, W. (2020). Cysteine dioxygenase catalyzed CF bond cleavage: An in silico approach. Chemical Physics Letters, 750, 137449. https://doi.org/10.1016/j.cplett.2020.137449
  • Stortz, C. A., & Sarotti, A. M. (2019). Exhaustive exploration of the conformational landscape of mono- and disubstituted five-membered rings by DFT and MP2 calculations. RSC Advances, 9(42), 24134–24145. https://doi.org/10.1039/C9RA03524A
  • van Rijssel, E. R., van Delft, P., Lodder, G., Overkleeft, H. S., van der Marel, G. A., Filippov, D. V., & Codée, J. D. C. (2014). Furanosyl oxocarbenium ion stability and stereoselectivity. Angewandte Chemie, 53(39), 10381–10385. https://doi.org/10.1002/anie.201405477
  • Vriend, G. (1990). WHAT IF: A molecular modeling and drug design program. Journal of Molecular Graphics, 8(1), 52–56. https://doi.org/10.1016/0263-7855(90)80070-V
  • Wan, Q., Parks, J. M., Hanson, B. L., Fisher, S. Z., Ostermann, A., Schrader, T. E., Graham, D. E., Coates, L., Langan, P., & Kovalevsky, A. (2015). Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography. Proceedings of the National Academy of Sciences of the United States of America, 112(40), 12384–12389. https://doi.org/10.1073/pnas.1504986112
  • Warshel, A., & Levitt, M. (1976). Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. Journal of Molecular Biology, 103(2), 227–249.
  • Warshel, A., Sharma, P. K., Kato, M., Xiang, Y., Liu, H., & Olsson, M. H. (2006). Electrostatic basis for enzyme catalysis. Chemical Reviews, 106(8), 3210–3235. https://doi.org/10.1021/cr0503106
  • Woodcock, H. L., Hodošček, M., & Brooks, B. R. (2007). Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms. The Journal of Physical Chemistry. A, 111(26), 5720–5728. https://doi.org/10.1021/jp0714217
  • Yamaguchi, A., Tada, T., Wada, K., Nakaniwa, T., Kitatani, T., Sogabe, Y., Takao, M., Sakai, T., & Nishimura, K. (2005). Structural basis for thermostability of endo-1,5-alpha-L-arabinanase from Bacillus thermodenitrificans TS-3. Journal of Biochemistry, 137(5), 587–592. https://doi.org/10.1093/jb/mvi078
  • Zechel, D. L., & Withers, S. G. (2000). Glycosidase mechanisms: Anatomy of a finely tuned catalyst. Accounts of Chemical Research, 33(1), 11–18. https://doi.org/10.1021/ar970172+
  • Zhang, R., Shi, X., Sun, Y., Zhang, Q., & Wang, W. (2018). Insights into the catalytic mechanism of dehydrogenase BphB: A quantum mechanics/molecular mechanics study. Chemosphere, 208, 69–76. https://doi.org/10.1016/j.chemosphere.2018.05.063
  • Zhu, L., Tang, X., Li, Y., Zhang, R., Wang, J., Zhang, Q., & Wang, W. (2018). QM/MM study of the reaction mechanism of Cl-cis, cis-muconate with muconate lactonizing enzyme. Bioorganic Chemistry, 80, 453–460. https://doi.org/10.1016/j.bioorg.2018.05.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.