280
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Pan-genomic analyses of 47 complete genomes of the Rickettsia genus and prediction of new vaccine targets and virulence factors of the species

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 7496-7510 | Received 02 Dec 2020, Accepted 26 Feb 2021, Published online: 15 Mar 2021

References

  • Ågren, J., Sundström, A., Håfström, T., & Segerman, B. (2012). Gegenees: Fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One, 7(6), e39107. https://doi.org/10.1371/journal.pone.0039107
  • Alikhan, N. F., Petty, N. K., Ben Zakour, N. L., & Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genomics, 12, 402. https://doi.org/10.1186/1471-2164-12-402
  • Azad, A. F., & Radulovic, S. (2003). Pathogenic rickettsiae as bioterrorism agents. Annals of the New York Academy of Sciences, 990, 734–738. https://doi.org/10.1111/j.1749-6632.2003.tb07452.x
  • Barinov, A., Loux, V., Hammani, A., Nicolas, P., Langella, P., Ehrlich, D., Maguin, E., & van de Guchte, M. (2009). Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics, 9(1), 61–73. https://doi.org/10.1002/pmic.200800195
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(SUPPL. 2). https://doi.org/10.1093/nar/gkp322
  • Bignell, C., & Thomas, C. M. (2001). The bacterial ParA-ParB partitioning proteins. Journal of Biotechnology, 91(1), 1–34. https://doi.org/10.1016/S0168-1656(01)00293-0
  • Brito, R., Guimarães, F., Velloso, J., Corrêa-Oliveira, R., Ruiz, J., Reis, A., & Resende, D. (2017). Immunoinformatics features linked to Leishmania vaccine development: Data integration of experimental and in silico studies. International Journal of Molecular Sciences, 18(2), 371. https://doi.org/10.3390/ijms18020371
  • Capriles, P. V. S. Z., Guimarães, A. C. R., Otto, T. D., Miranda, A. B., Dardenne, L. E., & Degrave, W. M. (2010). Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: Putative drug targets for chagas’ disease treatment. BMC Genomics, 11(1). https://doi.org/10.1186/1471-2164-11-610
  • Caro-Gomez, E., Gazi, M., Goez, Y., & Valbuena, G. (2014). Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine, 32(39), 4968–4976. https://doi.org/10.1016/j.vaccine.2014.06.089
  • Darby, A. C., Cho, N. H., Fuxelius, H. H., Westberg, J., & Andersson, S. G. E. (2007). Intracellular pathogens go extreme: Genome evolution in the Rickettsiales. Trends in Genetics: TIG, 23(10), 511–520. https://doi.org/10.1016/j.tig.2007.08.002
  • DeCs. (2017). Health Sciences Descriptors: Decs. ed São Paulo BIREME/PAHO/WHO [Internet]. http://decs.bvsalud.org/I/homepagei.htm
  • Emms, D. M., & Kelly, S. (2015). OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology, 16(1). https://doi.org/10.1186/s13059-015-0721-2
  • Gillespie, J. J., Beier, M. S., Rahman, M. S., Ammerman, N. C., Shallom, J. M., Purkayastha, A., Sobral, B. S., & Azad, A. F. (2007). Plasmids and Rickettsial evolution: Insight from Rickettsia felis. PLoS One, 2(3), e266. https://doi.org/10.1371/journal.pone.0000266
  • He, Y., Xiang, Z., & Mobley, H. L. T. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine and Biotechnology, 2010, 1–15. https://doi.org/10.1155/2010/297505
  • Hisham, Y., & Ashhab, Y. (2018). Identification of cross-protective potential antigens against pathogenic brucella spp. through combining pan-genome analysis with reverse vaccinology. Journal of Immunology Research], 2018, 1–15. https://doi.org/10.15/2018/1474517
  • Hong, H., Patel, D. R., Tamm, L. K., & van den Berg, B. (2006). The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel . The Journal of Biological Chemistry, 281(11), 7568–7577. https://doi.org/10.1074/jbc.M512365200
  • Hotelier, T. (2004). ESTHER, the database of the/-hydrolase fold superfamily of proteins. Nucleic Acids Research, 32(90001), 145D–1147. https://doi.org/10.1093/nar/gkh141
  • Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267. https://doi.org/10.1093/molbev/msj030
  • Jakimowicz, D., Brzostek, A., Rumijowska-Galewicz, A., Żydek, P., Dołzbłasz, A., Smulczyk-Krawczyszyn, A., Zimniak, T., Wojtasz, Ł., Zawilak-Pawlik, A., Kois, A., Dziadek, J., & Zakrzewska-Czerwińska, J. (2007). Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis. Microbiology (Reading, England), 153(Pt 12), 4050–4060. Available from: https://doi.org/10.1099/mic.0.2007/011619-0
  • Jamal, S. B., Hassan, S. S., Tiwari, S., Viana, M. V., Benevides, L. d J., Ullah, A., Turjanski, A. G., Barh, D., Ghosh, P., Costa, D. A., Silva, A., Röttger, R., Baumbach, J., & Azevedo, V. A. C. (2017). An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae. PLoS One, 12(10), e0186401. https://doi.org/10.1371/journal.pone.0186401
  • Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031
  • Kaur, G., Kaundal, S., Kapoor, S., Grimes, J. M., Huiskonen, J. T., & Thakur, K. G. (2018). Mycobacterium tuberculosis CarD, an essential global transcriptional regulator forms amyloid-like fibrils. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28290-4
  • Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://www.sciencedirect.com/science/article/pii/S0022283600943158?via%3Dihub https://doi.org/10.1006/jmbi.2000.4315
  • Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687–92. https://doi.org/10.1093/nar/gky1080
  • Liu, Y. Y., Chiou, C. S., & Chen, C. C. (2016). PGAdb-builder: A web service tool for creating pan-genome allele database for molecular fine typing. Scientific Reports, 6, 36213. https://doi.org/10.1038/srep36213
  • Livermore, D. M. (2003). Bacterial resistance: Origins, epidemiology, and impact. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 36(Suppl 1), S11–S23. https://doi.org/10.1086/344654
  • Maurya, P. K., Singh, S., & Mani, A. (2018). Comparative genomic analysis of Rickettsia rickettsii for identification of drug and vaccine targets: TolC as a proposed candidate for case study. Acta Tropica, 182, 100–110. https://doi.org/10.1016/j.actatropica.2018.02.021
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/340911795677602
  • Miryala, S. K., Anbarasu, A., & Ramaiah, S. (2021). Gene interaction network approach to elucidate the multidrug resistance mechanisms in the pathogenic bacterial strain Proteus mirabilis. Journal of Cellular Physiology, 236(1), 468–479. https://doi.org/10.1002/jcp.29874
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An Open chemical toolbox. Journal of Cheminformatics, 3(10), 33. https://doi.org/10.1186/1758-2946-3-33
  • Oleg, T., & Arthur, J. O. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem [Internet], 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Parola, P., Paddock, C. D., & Raoult, D. (2005). Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clinical Microbiology Reviews, 18(4), 719–756. https://doi.org/10.1128/CMR.18.4.719-2005
  • Perumal, D., Lim, C. S., & Sakharkar, M. K. (2007). In silico identification of putative drug targets in pseudomonas aeruginosa through metabolic pathway analysis. Lecture Notes in Computer Science (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics, 4774, 323–336. https://doi.org/10.1007/978-3-540-75286-8_31
  • Petersen, T. N., Brunak, S., Von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/nmeth.1701
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pirrung, M. C., Tumey, L. N., Raetz, C. R. H., Jackman, J. E., Snehalatha, K., McClerren, A. L., Fierke, C. A., Gantt, S. L., & Rusche, K. M. (2002). Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): Isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. Journal of Medicinal Chemistry, 45(19), 4359–4370. https://doi.org/10.1021/jm020183v
  • Pote, S., Pye, S. E., Sheahan, T. E., Gawlicka-Chruszcz, A., Majorek, K. A., & Chruszcz, M. (2018). 4-Hydroxy-tetrahydrodipicolinate reductase from Neisseria gonorrhoeae – Structure and interactions with coenzymes and substrate analog. Biochemical and Biophysical Research Communications, 503(3), 1993–1999. https://doi.org/10.1016/j.bbrc.2018.07.147
  • Raoult, D., & Roux, V. (1997). Rickettsioses as paradigms of new or emerging infectious diseases. Clinical Microbiology Reviews, 10(4), 694–719. https://doi.org/10.1128/CMR.10.4.694-719.1997
  • Schatzmayr, H. G. (2003). New perspectives in viral vaccines. Historia, Ciencias, Saude-Manguinhos, 10(Suppl 2), 655–669. https://doi.org/10.1590/S0104-59702003000500010
  • Shende, G., Haldankar, H., Barai, R. S., Bharmal, M. H., Shetty, V., & Idicula-Thomas, S. (2017). PBIT: Pipeline builder for identification of drug targets for infectious diseases. Bioinformatics (Oxford, England), 33(6), 929–931. https://doi.org/10.1093/bioinformatics/btw760
  • Sherman, R. M., & Salzberg, S. L. (2020). Pan-genomics in the human genome era. Nature Reviews. Genetics, 21(4), 243–254. https://doi.org/10.1038/s41576-020-0210-7
  • Soares, S. C., Geyik, H., Ramos, R. T. J., de Sá, P. H. C. G., Barbosa, E. G. V., Baumbach, J., Figueiredo, H. C. P., Miyoshi, A., Tauch, A., Silva, A., & Azevedo, V. (2016). GIPSy: Genomic island prediction software. Journal of Biotechnology, 232, 2–11. https://doi.org/10.1016/j.jbiotec.2015.09.008
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics (Oxford, England), 22(14), 1710–1716. https://doi.org/10.1093/bioinformatics/btl150
  • Sudhir, K., Glen, S., & Koichiro, T. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol [Internet], 33(7), msw054. https://doi.org/10.1093/molbev/msw054
  • The Universal Protein Resource (UniProt). (2007). Nucleic Acids Res [Internet].;35(SUPPL. 1). https://doi.org/10.1093/nar/gky1049
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Vilela Rodrigues, T. C., Jaiswal, A. K., de Sarom, A., de Castro Oliveira, L., Freire Oliveira, C. J., Ghosh, P., Tiwari, S., Miranda, F. M., de Jesus Benevides, L., Ariston de Carvalho Azevedo, V., & de Castro Soares, S. (2019). Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: A causative agent of pneumonia. Royal Society Open Science, 6(7), 190907. https://doi.org/10.1098/rsos.190907
  • Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., & Rarey, M. (2012). Combining global and local measures for structure-based druggability predictions. Journal of chemical information and modeling, 52(2), 360–372. https://doi.org/10.1021/ci200454v
  • Yakhnin, A. V., & Babitzke, P. (2014). NusG/Spt5: Are there common functions of this ubiquitous transcription elongation factor? Current Opinion in Microbiology, 18(1), 68–71. https://doi.org/10.1016/j.mib.2014.02.005
  • Zhang, R. (2004). DEG: A database of essential genes. Nucleic Acids Research, 32(90001), 271D–2272. http://www.ncbi.nlm.nih.gov/pubmed/14681410 https://doi.org/10.1093/nar/gkh024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.