509
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Potentiality of Moringa oleifera against SARS-CoV-2: identified by a rational computer aided drug design method

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 7517-7534 | Received 27 Sep 2020, Accepted 26 Feb 2021, Published online: 15 Mar 2021

References

  • Abd El-Mordy, F. M., El-Hamouly, M. M., Ibrahim, M. T., El-Rheem, G. A., Aly, O. M., Abd El-Kader, A. M., Youssif, K. A., & Abdelmohsen, U. R. (2020). Inhibition of SARS-CoV-2 main protease by phenolic compounds from Manilkara hexandra (Roxb.) Dubard assisted by metabolite profiling and in silico virtual screening. RSC Advances, 10(53), 32148–32155. https://doi.org/10.1039/D0RA05679K
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahmad, S., Abbasi, H. W., Shahid, S., Gul, S., & Abbasi, S. W. (2020). Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1775129
  • Ali, F., Hassan, N., & Abdrabou, R. (2016). Hepatoprotective and antiproliferative activity of moringinine, chlorogenic acid and quercetin. International Journal of Research in Medical Sciences, 4, 1147–1153. https://doi.org/10.18203/2320-6012.ijrms20160799
  • Bhowmick, S., AlFaris, N. A., ALTamimi, J. Z., ALOthman, Z. A., Aldayel, T. S., Wabaidur, S. M., & Islam, M. A. (2020). Screening and analysis of bioactive food compounds for modulating the CDK2 protein for cell cycle arrest: Multi-cheminformatics approaches for anticancer therapeutics. Journal of Molecular Structure, 1216, 128316. https://doi.org/10.1016/j.molstruc.2020.128316
  • Bin Li, H., & Chen, F. (2005). Isolation and purification of baicalein, wogonin and oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography. Journal of Chromatography A, 1074(1–2), 107–110. https://doi.org/10.1016/j.chroma.2005.03.088
  • BIOVIA Dassault Systèmes. (2020). BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, 3.0. San Diego: Dassault Systèmes. https://3ds.com/products-services/biovia/products
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
  • Cherrak, S. A., Merzouk, H., & Mokhtari-Soulimane, N. (2020). Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS ONE, 15(10), e0240653. https://doi.org/10.1371/journal.pone.0240653
  • Coelho, C., Gallo, G., Campos, C. B., Hardy, L., & WüRtele, M. (2020). Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS ONE, 15(10), e0240079. https://doi.org/10.1371/journal.pone.0240079
  • Daina, A., Michielin, O., & Zoete, V. (2014). ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19.
  • Debnath, P., Debnath, B., Bhaumik, S., & Debnath, S. (2020). In silico identification of potential inhibitors of ADP-ribose phosphatase of SARS-CoV-2 nsP3 by combining E-pharmacophore- and receptor-based virtual screening of database. ChemistrySelect, 5(30), 9388–9393. https://doi.org/10.1002/slct.202001419
  • Denaro, M., Smeriglio, A., Barreca, D., De Francesco, C., Occhiuto, C., Milano, G., & Trombetta, D. (2020). Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research: PTR, 34(4), 742–768. https://doi.org/10.1002/ptr.6575
  • Dhama, K., Sharun, K., Tiwari, R., Dadar, M., Malik, Y. S., Singh, K. P., & Chaicumpa, W. (2020). COVID-19, an emerging coronavirus infection: Advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vaccines & Immunotherapeutics, 16(6), 1232–1238. https://doi.org/10.1080/21645515.2020.1735227
  • Fu, L., Ye, F., Feng, Y., Yu, F., Wang, Q., Wu, Y., Zhao, C., Sun, H., Huang, B., Niu, P., Song, H., Shi, Y., Li, X., Tan, W., Qi, J., & Gao, G. F. (2020). Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nature Communications, 11(1), 4417–4417. https://doi.org/10.1038/s41467-020-18233-x
  • Fuzimoto, A. D., & Isidoro, C. (2020). The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? Journal of Traditional and Complement Medicine, 10(4), 405–419. https://doi.org/10.1016/j.jtcme.2020.05.003
  • Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends, 14(1), 72–73. https://doi.org/10.5582/bst.2020.01047
  • Gentile, D., Patamia, V., Scala, A., Sciortino, M. T., Piperno, A., & Rescifina, A. (2020). Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Marine Drugs, 18(4), 225. 10.3390/md18040225 https://doi.org/10.3390/md18040225
  • Ghoke, S. S., Sood, R., Kumar, N., Pateriya, A. K., Bhatia, S., Mishra, A., Dixit, R., Singh, V. K., Desai, D. N., Kulkarni, D. D., Dimri, U., & Singh, V. P. (2018). Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complementary and Alternative Medicine, 18, 174. https://doi.org/10.1186/s12906-018-2238-1
  • Günther, S., Reinke, P. Y. A., Fernandez-Garcia, Y., Lieske, J., Lane, T. J., Ginn, H. M., Koua, F. H. M., Ehrt, C., Ewert, W., Oberthuer, D., Yefanov, O., Meier, S., Lorenzen, K., Krichel, B., Kopicki, J.-D., Gelisio, L., Brehm, W., Dunkel, I., Seychell, B., … Meents, A. (2020). Inhibition of SARS-CoV-2 main protease by allosteric drug-binding. Biorxiv. https://doi.org/10.1101/2020.11.12.378422
  • Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., & Lee, R. E. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of Chemical Information and Modeling, 49(2), 444–460. https://doi.org/10.1021/ci800293n
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Huang, S.-Y., & Zou, X. (2006). Efficient molecular docking of NMR structures: Application to HIV-1 protease. Protein Science, 16(1), 43–51. https://doi.org/10.1110/ps.062501507
  • Huang, Y., Chen, W., Wallace, J. A., & Shen, J. (2016). All-atom continuous constant pH molecular dynamics with particle mesh Ewald and titratable water. Journal of Chemical Theory and Computation, 12(11), 5411–5421. https://doi.org/10.1021/acs.jctc.6b00552
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hussain, W., Haleem, K. S., Khan, I., Tauseef, I., Qayyum, S., Ahmed, B., & Riaz, M. N. (2017). Medicinal plants: A repository of antiviral metabolites. Future Virology, 12(6), 299–308. https://doi.org/10.2217/fvl-2016-0110
  • Islam, R., Parves, R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–20. https://doi.org/10.1080/07391102.2020.1761883
  • Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001
  • Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. https://doi.org/10.20944/preprints202003.0226.v1
  • Kumar, A. H. S. (2020). Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachtaindica) against SARS-CoV-2 protein targets. Biology, Engineering, Medicine and Science Reports, 6(1), 11–13. https://doi.org/10.5530/bems.6.1.4
  • Kumari, A., Rajput, V. S., Nagpal, P., Kukrety, H., Grover, S., & Grover, A. (2020). Dual inhibition of SARS-CoV-2 spike and main protease through a repurposed drug, rutin. Journal of Biomolecular Structure and Dynamics, 1–13. 10.1080/07391102.2020.1864476
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science: A Publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery, 19(3), 149-150. https://doi.org/10.1038/d41573020-00016-0
  • Liang, J., Pitsillou, E., Karagiannis, C., Darmawan, K. K., Ng, K., Hung, A., & Karagiannis, T. C. (2020 May 28). Interaction of the prototypical α-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: Molecular dynamic simulations highlight the stability of the ligand-protein complex. Computational Biology and Chemistry, 87, 107292. 10.1016/j.compbiolchem.2020.107292. https://doi.org/10.1016/j.compbiolchem.2020.107292
  • Liao, C., Sitzmann, M., Pugliese, A., & Nicklaus, M. C. (2011). Software and resources for computational medicinal chemistry. Future Medicinal Chemistry, 3(8), 1057–1085. https://doi.org/10.4155/fmc.11.63
  • Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y., Hsieh, C. C., & Chao, P. D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research, 68(1), 36–42. https://doi.org/10.1016/j.antiviral.2005.07.002
  • Lin, L. T., Hsu, W. C., & Lin, C. C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24–35. https://doi.org/10.4103/2225-4110.124335
  • Lipipun, V., Kurokawa, M., Suttisri, R., Taweechotipatr, P., Pramyothin, P., Hattori, M., & Shiraki, K. (2003). Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Research, 60(3), 175–180. https://doi.org/10.1016/S0166-3542(03)00152-9
  • Liu, J., Li, D., & Liu, X. (2016). A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat. Journal of Chemical Physics, 145, 024103. https://doi.org/10.1063/1.4954990
  • Liu, X., Zhang, B., Jin, Z., Yang, H., & Rao, Z. (2020). 6LU7: The crystal structure of COVID-19 main protease in complex with an inhibitor N3. National Center for Biotechnology Information, PDB ID: 6LU7. 10.2210/pdb6LU7/pdb
  • Monera, T. G., & Maponga, C. C. (2012). Prevalence and patterns of Moringa oleifera use among HIV positive patients in Zimbabwe: A cross-sectional survey. Journal of Public Health in Africa, 3(1), 6–24. https://doi.org/10.4081/jphia.2012.e6
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1752802
  • Rani, N. Z. A., Husain, K., & Kumolosasi, E. (2018). Moringa genus: A review of phytochemistry and pharmacology. Frontiers in Pharmacology, 9, 108. https://doi.org/10.3389/fphar.2018.00108
  • Ruymgaart, A. P., & Elber, R. (2012). Revisiting molecular dynamics on a CPU/GPU system: Water kernel and SHAKE parallelization. Journal of Chemical Theory and Computation, 8(11), 4624–4636. https://doi.org/10.1021/ct300324k
  • Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J.-Y., Kim, D., Nguyen, T. T. H., Park, S.-J., Chang, J. S., Park, K. H., Rho, M.-C., & Lee, W. S. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940–7947. https://doi.org/10.1016/j.bmc.2010.09.035
  • Ryu, Y. B., Park, S. J., Kim, Y. M., Lee, J. Y., Seo, W. D., Chang, J. S., Park, K. H., Rho, M. C., & Lee, W. S. (2010). SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorganic & Medicinal Chemistry Letters, 20(6), 1873–1876. https://doi.org/10.1016/j.bmcl.2010.01.152
  • Sampangi-Ramaiah, M. H., Vishwakarma, R., & Shaanker, R. U. (2020). Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118, 1087–1092. https://doi.org/10.18520/cs/v118/i7/1087-1092.
  • Sen, D., Debnath, P., Debnath, B., Bhaumik, S., & Debnath, S. (2020). Identification of potential inhibitors of SARS-CoV-2 Main Protease and Spike receptor from ten important spices through structure-based virtual screening and molecular dynamic study. Journal of Molecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1819883
  • Sharma, J., Kumar Bhardwaj, V., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933.
  • Singh, A., & Mishra, A. (2020). Leucoefdin a potential inhibitor against SARS CoV-2 Mpro. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1777903
  • Singh, K. D., & Muthusamy, K. (2013). Molecular modeling, quantum polarized ligand docking and structure-based 3D-QSAR analysis of the imidazole series as dual AT(1) and ET(A) receptor antagonists. Acta Pharmacologica Sinica, 34(12), 1592–1606. https://doi.org/10.1038/aps.2013.129
  • Solnier, J., & Fladerer, J. P. (2020). Flavonoids: A complementary approach to conventional therapy of COVID-19? Phytochemistry Reviews, 18, 1–23. https://doi.org/10.1007/s11101-020-09720-6
  • Su, H., Yao, S., Zhao, W., Li, M., Liu, J., Shang, W., Xie, H., Ke, C., Gao, M., Yu, K., Liu, H., Shen, J., Tang, W., Zhang, L., Zuo, J., Jiang, H., Bai, F., Wu, Y., Ye, Y., & Xu, Y. (2020). Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. BioRxiv. https://doi.org/10.1101/2020.04.13.038687
  • Su, H.-X., Yao, S., Zhao, W.-F., Li, M.-J., Liu, J., Shang, W.-J., Xie, H., Ke, C.-Q., Hu, H.-C., Gao, M.-N., Yu, K.-Q., Liu, H., Shen, J.-S., Tang, W., Zhang, L.-K., Xiao, G.-F., Ni, L., Wang, D.-W., Zuo, J.-P., … Xu, Y.-C. (2020). Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacologica Sinica, 41, 1167–1177. https://doi.org/10.1038/s41401-020-0483-6
  • Tiwari, V., Darmani, N. A., Yue, B. Y. J. T., & Shukla, D. (2010). In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytotherapy Research: PTR, 24(8), 1132–1140. https://doi.org/10.1002/ptr.3085
  • Tu, Y.-F., Chien, C.-S., Yarmishyn, A. A., Lin, Y.-Y., Luo, Y.-H., Lin, Y.-T., Lai, W.-Y., De, M., Yang, S.-J., Chou, Y.-P., Yang, M.-L., Wang, S.-H., & Chiou, A. (2020). Review of SARS-CoV-2 and the ongoing clinical trials. International Journal of Molecular Sciences, 21(7), 2657.10.3390/ijms21072657.
  • ul Qamar, M. T., Alqahtani, S. M., Alamri, M. A., & Chen, L.-L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319. https://doi.org/10.1016/j.jpha.2020.03.009
  • Vuong, W., Khan, M. B., Fischer, C., Arutyunova, E., Lamer, T., Shields, J., Saffran, H. A., McKay, R. T., van Belkum, M. J., Joyce, M. A., Young, H. S., Tyrrell, D. L., Vederas, J. C., & Lemieux, M. J. (2020). Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature Communications, 11(1), 4282–4282. 10.1038/s41467-020-18096-2.
  • Warnock, D. G. (2020). Clinical Trials during the SARS-CoV-2 Pandemic. Nephron, 144(5), 248–250. 10.1159/000507582
  • World Health Organization. (2020). International Health Regulations Emergency Committee on novel coronavirus in China. World Health Organization. https://www.who.int/news-room/events/detail/2020/01/30/default-calendar/international-health-regulations-emergency-committee-on-novel-coronavirus-in-china
  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. Z. Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. Y. L. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Xu, B., Huang, Z., Liu, C., Cai, Z., Pan, W., Cao, P., Hao, X., & Liang, G. (2009). Synthesis and anti-hepatitis B virus activities of Matijing-Su derivatives. Bioorganic & Medicinal Chemistry, 17(8), 3118–3125. https://doi.org/10.1016/j.bmc.2009.03.003
  • Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13190–13195. https://doi.org/10.1073/pnas.1835675100
  • Yang, K. S., Ma, X. R., Ma, Y., Alugubelli, Y. R., Scott, D. A., Vatansever, E. C., Drelich, A. K., Sankaran, B., Geng, Z. Z., Blankenship, L. R., Ward, H. E., Sheng, Y. J., Hsu, J. C., Kratch, K. C., Zhao, B., Hayatshahi, H. S., Liu, J., Li, P., Fierke, C. A., … Liu, W. R. (2020). A quick route to multiple highly potent SARS-CoV-2 main protease inhibitors. ChemMedChem. https://doi.org/10.1002/cmdc.202000924
  • Yoshino, R., Yasuo, N., & Sekijima, M. (2020). Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Scientific Reports, 10(1), 12493. https://doi.org/10.1038/s41598-020-69337-9.
  • Younus, I., Ashraf, M., Fatima, A., Altaf, I., & Javeed, A. (2020). Evaluation of cytotoxic and antiviral activities of aqueous leaves extracts of different plants against foot and mouth disease virus infection in farming animals. Pakistan Journal of Pharmaceutical Sciences, 30(6), 2165–2172.
  • Zhang, L., Lin, D., Kusov, Y., Nian, Y., Ma, Q., Wang, J., Von Brunn, A., Leyssen, P., Lanko, K., Neyts, J., De Wilde, A., Snijder, E. J., Liu, H., & Hilgenfeld, R. (2020). α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. Journal of Medicinal Chemistry, 63(9), 4562–4578. https://doi.org/10.1021/acs.jmedchem.9b01828
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W, China Novel Coronavirus Investigating and Research Team (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.