507
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Unraveling the potential role of bioactive molecules produced by Trichoderma spp. as inhibitors of tomatinase enzyme having an important role in wilting disease: an in-silico approach

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 7535-7544 | Received 17 Dec 2020, Accepted 26 Feb 2021, Published online: 15 Mar 2021

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389
  • Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics (Oxford, England), 22(2), 195–201. https://doi.org/10.1093/bioinformatics/bti770
  • Bahaman, A. H., Wahab, R. A., Abdul Hamid, A. A., Abd Halim, K. B., & Kaya, Y. (2020). Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1751713
  • Berendsen, H. J. C., van der, S., ∥ van Drunen, R. (1995). GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56.
  • Bhattacharya, A., Tejero, R., & Montelione, G. T. (2007). Evaluating protein structures determined by structural genomics consortia. Proteins, 66(4), 778–795. https://doi.org/10.1002/prot.21165
  • Bunbury-Blanchette, A. L., & Walker, A. K. (2019). Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biological Control, 130, 127–135. https://doi.org/10.1016/j.biocontrol.2018.11.007
  • Cheng, F., Yang, J., Bocola, M., Schwaneberg, U., & Zhu, L. (2018). Loop engineering reveals the importance of active-site-decorating loops and gating residue in substrate affinity modulation of arginine deiminase (an anti-tumor enzyme). Biochemical and Biophysical Research Communications, 499(2), 233–238. https://doi.org/10.1016/j.bbrc.2018.03.134
  • Gajula, M., Kumar, A., & Ijaq, J. (2016). Protocol for molecular dynamics simulations of proteins. Bio-Protocol, 6(23), e2051. https://doi.org/10.21769/BioProtoc.2051
  • Gautam, T., Saripalli, G., Gahlaut, V., Kumar, A., Sharma, P. K., Balyan, H. S., & Gupta, P. K. (2019). Further studies on sugar transporter (SWEET) genes in wheat (Triticum aestivum L.).). Molecular Biology Reports, 46(2), 2327–2353. https://doi.org/10.1007/s11033-019-04691-0
  • Jangir, M., Sharma, S., & Sharma, S. (2019). Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biological Control, 138, 104069. https://doi.org/10.1016/j.biocontrol.2019.104069
  • Kumar, A., Choudhir, G., Shukla, S. K., Sharma, M., Tyagi, P., Bhushan, A., & Rathore, M. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1772112
  • Kumari, I., Chaudhary, N., Sandhu, P., Ahmed, M., & Akhter, Y. (2016). Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: Towards higher catalytic activities empowering sustainable agriculture. Journal of Biomolecular Structure & Dynamics, 34(6), 1176–1189. https://doi.org/10.1080/07391102.2015.1073632
  • Kumari, M., & Subbarao, N. (2020). Virtual screening to identify novel potential inhibitors for Glutamine synthetase of Mycobacterium tuberculosis. Journal of Biomolecular Structure & Dynamics, 38(17), 5062–5080. https://doi.org/10.1080/07391102.2019.1695670
  • Kumar, A., Kumar, S., Kumar, U., Suravajhala, P., & Gajula, M. N. V. P. (2016). Functional and structural insights into novel DREB1A transcription factors in common wheat (Triticum aestivum L.): A molecular modeling approach. Computational Biology and Chemistry, 64, 217–226. https://doi.org/10.1016/j.compbiolchem.2016.07.008
  • Kumar, R., & Mukherjee, P. K. (2020). Trichoderma virens Alt a 1 protein may target maize PR5/thaumatin-like protein to suppress plant defence: An insilico analysis. Physiological and Molecular Plant Pathology, 112, 101551. https://doi.org/10.1016/j.pmpp.2020.101551
  • Kumar, A., Sharma, M., Gahlaut, V., Nagaraju, M., Chaudhary, S., Kumar, A., Tyagi, P., Gajula, M. N. V. P., & Singh, K. P. (2019). Genome-wide identification, characterization, and expression profiling of SPX gene family in wheat. International Journal of Biological Macromolecules, 140, 17–32. https://doi.org/10.1016/j.ijbiomac.2019.08.105
  • Kumar, A., Sharma, M., Kumar, S., Tyagi, P., Wani, S. H., Gajula, M. N. V. P., & Singh, K. P. (2018). Functional and structural insights into candidate genes associated with nitrogen and phosphorus nutrition in wheat (Triticum aestivum L.). International Journal of Biological Macromolecules, 118(Pt A), 76–91. https://doi.org/10.1016/j.ijbiomac.2018.06.009
  • Liao, K. H., Chen, K.-B., Lee, W.-Y., Sun, M.-F., Lee, C.-C., & Chen, C. Y.-C. (2014). Ligand-based and structure-based investigation for Alzheimer's disease from traditional Chinese medicine. Evidence-Based Complementary and Alternative Medicine: eCAM, 2014, 364819. https://doi.org/10.1155/2014/364819
  • Lorito, M., & Woo, S. L. (2015). Trichoderma: A multi-purpose tool for integrated pest management. In Principles of Plant-Microbe Interactions (pp. 345–353). Springer International Publishing. https://doi.org/10.1007/978-3-319-08575-3_36
  • Maqsood, A., Wu, H., Kamran, M., Altaf, H., Mustafa, A., Ahmar, S., Hong, N. T. T., Tariq, K., He, Q., & Chen, J.-T. (2020). Variations in growth, physiology, and antioxidative defense responses of two tomato (Solanum lycopersicum L.) cultivars after co-infection of Fusarium oxysporum and Meloidogyne incognita. Agronomy, 10(2), 159. https://doi.org/10.3390/agronomy10020159
  • Mathpal, P., Kumar, U., Kumar, A., Kumar, S., Malik, S., Kumar, N., Dhaliwal, H. S., & Kumar, S. (2018). Identification, expression analysis, and molecular modeling of Iron-deficiency-specific clone 3 (Ids3)-like gene in hexaploid wheat. 3. Biotech, 8(4), 219. https://doi.org/10.1007/s13205-018-1230-2
  • Mohamad Rosdi, M. N., Mohd Arif, S., Abu Bakar, M. H., Razali, S. A., Mohamed Zulkifli, R., & Ya'akob, H. (2018). Molecular docking studies of bioactive compounds from Annona muricata Linn as potential inhibitors for Bcl-2, Bcl-w and Mcl-1 antiapoptotic proteins. Apoptosis: An International Journal on Programmed Cell Death, 23(1), 27–40. https://doi.org/10.1007/s10495-017-1434-7
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nepal, B., & Stine, K. J. (2019). Glycoalkaloids: Structure, properties, and interactions with model membrane systems. Processes, 7(8), 513. https://doi.org/10.3390/pr7080513
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Reino, J. L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2007). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7(1), 89–123. https://doi.org/10.1007/s11101-006-9032-2
  • Savary, S., Ficke, A., Aubertot, JN., & Holier, C. (2020). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4, 519–537. https://doi.org/10.1007/s12571-012-0200-5
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Śledź, P., & Caflisch, A. (2018). Protein structure-based drug design: From docking to molecular dynamics. Current Opinion in Structural Biology, 48, 93–102. https://doi.org/10.1016/j.sbi.2017.10.010
  • Srinivas, C., Nirmala Devi, D., Narasimha Murthy, K., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., Chandra Nayaka, S., & Srivastava, R. K. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity- A review. Saudi Journal of Biological Sciences, 26(7), 1315–1324. https://doi.org/10.1016/j.sjbs.2019.06.002
  • Thaines Bodah, E. (2017). Root rot diseases in plants: A review of common causal agents and management strategies. Agricultural Research & Technology: Open Access Journal, 5(3), 555661. https://doi.org/10.19080/ARTOAJ.2017.05.555661
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1–20. https://doi.org/10.1016/j.bej.2007.05.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.