318
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Ligand based 3D-QSAR model, pharmacophore, molecular docking and ADME to identify potential fibroblast growth factor receptor 1 inhibitors

, , , , , , , , , , , ORCID Icon, & show all
Pages 7584-7597 | Received 24 Sep 2020, Accepted 01 Mar 2021, Published online: 18 Mar 2021

References

  • Aouidate, A., Ghaleb, A., Ghamali, M., Ousaa, A., Choukrad, M., Sbai, A., Bouachrine, M., & Lakhlifi, T. (2018). 3D QSAR studies, molecular docking and ADMET evaluation, using thiazolidine derivatives as template to obtain new inhibitors of PIM1 kinase. Computational Biology and Chemistry, 74, 201–211. https://doi.org/10.1016/j.compbiolchem.2018.03.008
  • Atatreh, N., Ghattas, M. A., Bardaweel, S. K., Rawashdeh, S. A., & Sorkhy, M. A. (2018). Identification of new inhibitors of Mdm2-p53 interaction via pharmacophore and structure-based virtual screening. Drug Design, Development and Therapy, 12, 3741–3752. https://doi.org/10.2147/DDDT.S182444
  • Bockorny, B., Rusan, M., Chen, W., Liao, R. G., Li, Y., Piccioni, F., Wang, J., Tan, L., Thorner, A. R., Li, T., Zhang, Y., Miao, C., Ovesen, T., Shapiro, G. I., Kwiatkowski, D. J., Gray, N. S., Meyerson, M., Hammerman, P. S., & Bass, A. J. (2018). RAS-MAPK reactivation facilitates acquired resistance in FGFR1-amplified lung cancer and underlies a rationale for Upfront FGFR-MEK blockade. Molecular Cancer Therapeutics, 17(7), 1526–1539. https://doi.org/10.1158/1535-7163.MCT-17-0464
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
  • Chagas, C. M., Moss, S., & Alisaraie, L. (2018). Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski's Rule of Five. International Journal of Pharmaceutics, 549(1-2), 133–149. https://doi.org/10.1016/j.ijpharm.2018.07.046
  • Du, S., Yang, B., Wang, X., Li, W. Y., Lu, X. H., Zheng, Z. H., … Wang, R. L. (2019). Identification of potential leukocyte antigen-related protein (PTP-LAR) inhibitors through 3D QSAR pharmacophore-based virtual screening and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 38(14), 4232-4245. https://doi.org/10.1080/07391102.2019.1676825
  • Fei, J., Zhou, L., Liu, T., & Tang, X. Y. (2013). Pharmacophore modeling, virtual screening, and molecular docking studies for discovery of novel Akt2 inhibitors. International Journal of Medical Sciences, 10(3), 265–275. https://doi.org/10.7150/ijms.5344
  • Fischbach, A., Rogler, A., Erber, R., Stoehr, R., Poulsom, R., Heidenreich, A., Schneevoigt, B.-S., Hauke, S., Hartmann, A., Knuechel, R., Veeck, J., & Gaisa, N. T. (2015). Fibroblast growth factor receptor (FGFR) gene amplifications are rare events in bladder cancer. Histopathology, 66(5), 639–649. https://doi.org/10.1111/his.12473
  • Gagnon, J. K., Law, S. M., & Brooks, C. L. 3rd. (2016). Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM. Journal of Computational Chemistry, 37(8), 753–762. https://doi.org/10.1002/jcc.24259
  • Ghayas, S., Ali Masood, M., Parveen, R., Aquib, M., Farooq, M. A., Banerjee, P., … Bavi, R. (2019). 3D QSAR pharmacophore-based virtual screening for the identification of potential inhibitors of tyrosinase. Journal of Biomolecular Structure and Dynamics, 38(10), 2916-2927. https://doi.org/10.1080/07391102.2019.1647287
  • Ghedini, G. C., Ronca, R., Presta, M., & Giacomini, A. (2018). Future applications of FGF/FGFR inhibitors in cancer. Expert Review of Anticancer Therapy, 18(9), 861–872. https://doi.org/10.1080/14737140.2018.1491795
  • Grosso, G., Bella, F., Godos, J., Sciacca, S., Del Rio, D., Ray, S., Galvano, F., & Giovannucci, E. L. (2017). Possible role of diet in cancer: Systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutrition Reviews, 75(6), 405–419. https://doi.org/10.1093/nutrit/nux012
  • Guffanti, F., Chilà, R., Bello, E., Zucchetti, M., Zangarini, M., Ceriani, L., Ferrari, M., Lupi, M., Jacquet-Bescond, A., Burbridge, M. F., Pierrat, M.-J., & Damia, G. (2017). In vitro and in vivo activity of lucitanib in FGFR1/2 amplified or mutated cancer models. Neoplasia (New York, N.Y.), 19(1), 35–42. https://doi.org/10.1016/j.neo.2016.11.008
  • Im, C. (2016). Docking and three-dimensional quantitative structure-activity relationship analyses of imidazole and thiazolidine derivatives as Aurora A kinase inhibitors. Archives of Pharmacal Research, 39(12), 1635–1643. https://doi.org/10.1007/s12272-016-0870-1
  • John, S., Thangapandian, S., Arooj, M., Hong, J. C., Kim, K. D., & Lee, K. W. (2011). Development, evaluation and application of 3D QSAR Pharmacophore model in the discovery of potential human renin inhibitors. BMC Bioinformatics, 12(Suppl 14), S4. https://doi.org/10.1186/1471-2105-12-S14-S4
  • Katoh, M. (2016). Therapeutics targeting FGF signaling network in human diseases. Trends in Pharmacological Sciences, 37(12), 1081–1096. https://doi.org/10.1016/j.tips.2016.10.003
  • Katoh, M., & Nakagama, H. (2014). FGF receptors: Cancer biology and therapeutics. Medicinal Research Reviews, 34(2), 280–300. https://doi.org/10.1002/med.21288
  • Kumar, B., Singh, S., Skvortsova, I., & Kumar, V. (2017). Promising targets in anti-cancer drug development: Recent updates. Current Medicinal Chemistry, 24(42), 4729–4752. https://doi.org/10.2174/0929867324666170331123648
  • Lau, W. M., Teng, E., Huang, K. K., Tan, J. W., Das, K., Zang, Z., Chia, T., Teh, M., Kono, K., Yong, W. P., Shabbir, A., Tay, A., Phua, N. S., Tan, P., Chan, S. L., & So, J. B. Y. (2018). Acquired Resistance to FGFR Inhibitor in Diffuse-Type Gastric Cancer through an AKT-Independent PKC-Mediated Phosphorylation of GSK3β. Molecular Cancer Therapeutics, 17(1), 232–242. https://doi.org/10.1158/1535-7163.MCT-17-0367
  • Liu, J., Peng, X., Dai, Y., Zhang, W., Ren, S., Ai, J., Geng, M., & Li, Y. (2015). Design, synthesis and biological evaluation of novel FGFR inhibitors bearing an indazole scaffold. Organic & Biomolecular Chemistry, 13(28), 7643–7654. https://doi.org/10.1039/c5ob00778j
  • Markt, P., Feldmann, C., Rollinger, J. M., Raduner, S., Schuster, D., Kirchmair, J., Distinto, S., Spitzer, G. M., Wolber, G., Laggner, C., Altmann, K.-H., Langer, T., & Gertsch, J. (2009). Discovery of novel CB2 receptor ligands by a pharmacophore-based virtual screening workflow. Journal of Medicinal Chemistry, 52(2), 369–378. https://doi.org/10.1021/jm801044g
  • Pal, S., Kumar, V., Kundu, B., Bhattacharya, D., Preethy, N., Reddy, M. P., & Talukdar, A. (2019). Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Computational and Structural Biotechnology Journal, 17, 291–310. https://doi.org/10.1016/j.csbj.2019.02.006
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Shahin, R., Swellmeen, L., Shaheen, O., Aboalhaija, N., & Habash, M. (2016). Identification of novel inhibitors for Pim-1 kinase using pharmacophore modeling based on a novel method for selecting pharmacophore generation subsets. Journal of Computer-Aided Molecular Design, 30(1), 39–68. https://doi.org/10.1007/s10822-015-9887-7
  • Sun, L., Tran, N., Liang, C., Tang, F., Rice, A., Schreck, R., Waltz, K., Shawver, L. K., McMahon, G., & Tang, C. (1999). Design, synthesis, and evaluations of substituted 3-[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. Journal of Medicinal Chemistry, 42(25), 5120–5130. https://doi.org/10.1021/jm9904295
  • Turner, N., Pearson, A., Sharpe, R., Lambros, M., Geyer, F., Lopez-Garcia, M. A., Natrajan, R., Marchio, C., Iorns, E., Mackay, A., Gillett, C., Grigoriadis, A., Tutt, A., Reis-Filho, J. S., & Ashworth, A. (2010). FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res, 70(5), 2085–2094. https://doi.org/10.1158/0008-5472.CAN-09-3746
  • Vrontaki, E., & Kolocouris, A. (2018). Pharmacophore GENERATION and 3D-QSAR model development using PHASE. Methods in Molecular Biology (Clifton, N.J.), 1824, 387–401. https://doi.org/10.1007/978-1-4939-8630-9_23
  • Vuorinen, A., & Schuster, D. (2015). Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. Methods (San Diego, Calif.), 71, 113–134. https://doi.org/10.1016/j.ymeth.2014.10.013
  • Wang, J.-L., Li, L., Hu, M.-B., Wu, B., Fan, W.-X., Peng, W., Wei, D.-N., & Wu, C.-J. (2019). In silico drug design of inhibitor of nuclear factor kappa B kinase subunit beta inhibitors from 2-acylamino-3-aminothienopyridines based on quantitative structure-activity relationships and molecular docking. Computational Biology and Chemistry, 78, 297–305. https://doi.org/10.1016/j.compbiolchem.2018.12.021
  • Weiss, J., Sos, M. L., Seidel, D., Peifer, M., Zander, T., Heuckmann, J. M., Ullrich, R. T., Menon, R., Maier, S., Soltermann, A., Moch, H., Wagener, P., Fischer, F., Heynck, S., Koker, M., Schöttle, J., Leenders, F., Gabler, F., Dabow, I., … Thomas, R. K. (2010). Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Science Translational Medicine, 2(62), 62ra93. https://doi.org/10.1126/scitranslmed.3001451
  • Xie, X., Lin, J., Zhong, Y., Fu, M., & Tang, A. (2019). FGFR3S249C mutation promotes chemoresistance by activating Akt signaling in bladder cancer cells. Experimental and Therapeutic Medicine, 18(2), 1226–1234. https://doi.org/10.3892/etm.2019.7672
  • Xu, W., Lucke, A. J., & Fairlie, D. P. (2015). Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. Journal of Molecular Graphics & Modelling, 57, 76–88. https://doi.org/10.1016/j.jmgm.2015.01.009
  • Xue, W. J., Li, M. T., Chen, L., Sun, L. P., & Li, Y. Y. (2018). Recent developments and advances of FGFR as a potential target in cancer. Future Medicinal Chemistry, 10(17), 2109–2126. https://doi.org/10.4155/fmc-2018-0103
  • Yan, W., Wang, X., Dai, Y., Zhao, B., Yang, X., Fan, J., Gao, Y., Meng, F., Wang, Y., Luo, C., Ai, J., Geng, M., & Duan, W. (2016). Discovery of 3-(5'-substituted)-benzimidazole-5-(1-(3,5-dichloropyridin-4-yl)ethoxy)-1H-indazoles as potent fibroblast growth factor receptor inhibitors: Design, synthesis, and biological evaluation. Journal of Medicinal Chemistry, 59(14), 6690–6708. https://doi.org/10.1021/acs.jmedchem.6b00056
  • Yu, P., Wilhelm, K., Dubrac, A., Tung, J. K., Alves, T. C., Fang, J. S., Xie, Y., Zhu, J., Chen, Z., De Smet, F., Zhang, J., Jin, S.-W., Sun, L., Sun, H., Kibbey, R. G., Hirschi, K. K., Hay, N., Carmeliet, P., Chittenden, T. W., … Simons, M. (2017). FGF-dependent metabolic control of vascular development. Nature, 545(7653), 224–228. https://doi.org/10.1038/nature22322
  • Zekri, A., Harkati, D., Kenouche, S., & Saleh, B. A. (2020). QSAR modeling, docking, ADME and reactivity of indazole derivatives as antagonizes of estrogen receptor alpha (ER-α) positive in breast cancer. Journal of Molecular Structure, 1217, 128442. https://doi.org/10.1016/j.molstruc.2020.128442
  • Zhou, X., Yu, S., Su, J., & Sun, L. (2016). Computational study on new natural compound inhibitors of pyruvate dehydrogenase kinases. International Journal of Molecular Sciences, 17(3), 340. https://doi.org/10.3390/ijms17030340
  • Zhou, Y., Di, B., & Niu, M. M. (2019). Structure-based pharmacophore design and virtual screening for novel tubulin inhibitors withpotential anticancer activity. Molecules, 24(17), 3181. https://doi.org/10.3390/molecules24173181

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.