416
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Cyanobacterial natural products as sources for antiviral drug discovery against COVID-19

, & ORCID Icon
Pages 7629-7644 | Received 22 Nov 2020, Accepted 01 Mar 2021, Published online: 22 Mar 2021

References

  • Abdool Karim, S. S. (2020). The 2nd Covid-19 wave in South Africa:Transmissibility & a 501.V2 variant. 18 December 2020. Available from: https://www.scribd.com/document/488618010/Full presentation-by-SSAK-18-Dec.l
  • Ahn, D. G., Shin, H. J., Kim, M. H., Lee, S., Kim, H. S., Myoung, J., Kim, B. T., & Kim, S. J. (2020). Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (covid-19). Journal of Microbiology and Biotechnology, 30(3), 313–324. https://doi.org/10.4014/jmb.2003.03011
  • Alexander, H. K., Mayer, S. I., & Bonhoeffer, S. (2017). Population heterogeneity in mutation rate increases the frequency of higher-order mutants and reduces long-term mutational load. Molecular Biology and Evolution, 34(2), 419–436. https://doi.org/10.1093/molbev/msw244
  • Apt, K. E., & Behrens, P. W. (1999). Commercial developments in microalgal biotechnology. Journal of Phycology, 35(2), 215–226. https://doi.org/10.1046/j.1529-8817.1999.3520215.x
  • Assessment, R. R. (2020). Coronavirus disease 2019 (covid-19) in the eu/eea and the uk–ninth update. European Centre for Disease Prevention and Control.
  • Bokesch, H. R., O'Keefe, B. R., McKee, T. C., Pannell, L. K., Patterson, G. M. L., Gardella, R. S., Sowder, R. C., Turpin, J., Watson, K., Buckheit, R. W., & Boyd, M. R. (2003). A potent novel anti-hiv protein from the cultured cyanobacterium scytonema varium. Biochemistry, 42(9), 2578–2584. https://doi.org/10.1021/bi0205698
  • Bolmstedt, A. J., O'keefe, B. R., Shenoy, S. R., Mcmahon, J. B., & Boyd, M. R. (2001). Cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharide-specific manner. Molecular Pharmacology, 59(5), 949–954. https://doi.org/10.1124/mol.59.5.949
  • Botos, I., & Wlodawer, A. (2003). Cyanovirin-N: a sugar-binding antiviral protein with a new twist. Cellular and Molecular Life Sciences (CMLS), 60(2), 277–287. https://doi.org/10.1007/s000180300023
  • Brugère-Picoux, J. (2020). Sars-cov-2: Sensitivity of animal species and public health risks opinion of the french national academy of medicine and the veterinary academy of france jeanne brugère-picoux, yves buisson and jean-luc angot.
  • Burja, A. M., Banaigs, B., Abou-Mansour, E., Burgess, J. G., & Wright, P. C. (2001). Marine cyanobacteria—a prolific source of natural products. Tetrahedron, 57(46), 9347–9377. https://doi.org/10.1016/S0040-4020(01)00931-0
  • Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., Wen, F., Huang, X., Ning, G., & Wang, W. (2020). Comparative genetic analysis of the novel coronavirus (2019-ncov/sars-cov-2) receptor ace2 in different populations. Cell Discovery, 6(1), 1–4. https://doi.org/10.1038/s41421-020-0147-1
  • Carrillo, J., Izquierdo-Useros, N., Ávila-Nieto, C., Pradenas, E., Clotet, B., & Blanco, J. (2021). Humoral immune responses and neutralizing antibodies against sars-cov-2; implications in pathogenesis and protective immunity. Biochemical and Biophysical Research Communications, 538, 187–191. https://doi.org/10.1016/j.bbrc.2020.10.108
  • Chi, J., Yu, S., Liu, C., Zhao, X., Zhong, J., Liang, Y., Ta, N., Yin, X., & Zhao, D. (2018). Nox4-dependent ros production is involved in cvb3-induced myocardial apoptosis. Biochemical and Biophysical Research Communications, 503(3), 1641–1644. https://doi.org/10.1016/j.bbrc.2018.07.093
  • Chi, H., Zheng, X., Wang, X., Wang, C., Wang, H., Gai, W., Perlman, S., Yang, S., Zhao, J., & Xia, X. (2017). DNA vaccine encoding middle east respiratory syndrome coronavirus s1 protein induces protective immune responses in mice. Vaccine, 35(16), 2069–2075. https://doi.org/10.1016/j.vaccine.2017.02.063
  • Chlipala, G., Mo, S., Carcache de Blanco, E. J., Ito, A., Bazarek, S., & Orjala, J. (2009). Investigation of antimicrobial and protease-inhibitory activity from cultured cyanobacteria. Pharmaceutical Biology, 47(1), 53–60. https://doi.org/10.1080/13880200802415483
  • Ciuriak, D. (2020). Who knew what when: The international transmission of information on the covid-19 outbreak. Available at SSRN 3677596.
  • Connors, J. M., & Levy, J. H. (2020). Covid-19 and its implications for thrombosis and anticoagulation. Blood, 135(23), 2033–2040. https://doi.org/10.1182/blood.2020006000
  • Conte, C., Sogni, F., Affanni, P., Veronesi, L., Argentiero, A., & Esposito, S. (2020). Vaccines against coronaviruses: The state of the art. Vaccines, 8(2), 309. https://doi.org/10.3390/vaccines8020309
  • Correia, A. O., Feitosa, P. W. G., de Sousa Moreira, J. L., Nogueira, S. Á. R., Fonseca, R. B., & Nobre, M. E. P. (2020). Neurological manifestations of covid-19 and other coronaviruses: A systematic review. Neurology, Psychiatry, and Brain Research, 37, 27–32. https://doi.org/10.1016/j.npbr.2020.05.008
  • Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N., & Decroly, E. (2020). The spike glycoprotein of the new coronavirus 2019-ncov contains a furin-like cleavage site absent in cov of the same clade. Antiviral Research, 176, 104742. https://doi.org/10.1016/j.antiviral.2020.104742
  • Deyab, M., Mofeed, J., El-Bilawy, E., & Ward, F. (2020). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Archives of Microbiology, 202(2), 213–223. https://doi.org/10.1007/s00203-019-01734-9
  • Dittmann, E., & Wiegand, C. (2006). Cyanobacterial toxins-occurrence, biosynthesis and impact on human affairs. Molecular Nutrition & Food Research, 50(1), 7–17. https://doi.org/10.1002/mnfr.200500162
  • Dixit, R. B., & Suseela, M. (2013). Cyanobacteria: Potential candidates for drug discovery. Antonie Van Leeuwenhoek, 103(5), 947–961. https://doi.org/10.1007/s10482-013-9898-0
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., & Jiang, S. (2009). The spike protein of sars-cov—a target for vaccine and therapeutic development. Nature Reviews. Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090
  • Duffy, S. (2018). Why are rna virus mutation rates so damn high? PLoS Biology, 16(8), e3000003 https://doi.org/10.1371/journal.pbio.3000003
  • Eghtedari, M., Jafari Porzani, S., & Nowruzi, B. (2021). Anticancer potential of natural peptides from terrestrial and marine environments: A review. Phytochemistry Letters, https://doi.org/10.1016/j.phytol.2021.02.008
  • Elaya Perumal, U., & Sundararaj, R. (2020). Algae: A potential source to prevent and cure the novel coronavirus–a review. International Journal on Emerging Technologies, 11(2), 479–483.
  • Entzeroth, M., Blackman, A. J., Mynderse, J. S., & Moore, R. E. (1985). Structures and stereochemistries of oscillatoxin b, 31-noroscillatoxin b, oscillatoxin d, and 30-methyloscillatoxin d. The Journal of Organic Chemistry, 50(8), 1255–1259. https://doi.org/10.1021/jo00208a019
  • Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Methods in molecular biology (Clifton, N.J.), 1282, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
  • Fouskas, T. (2020). Migrants, asylum seekers and refugees in greece in the midst of the covid-19 pandemic. Comparative Cultural Studies-European and Latin American Perspectives, 5(10), 39–58.
  • Fung, S. Y., Yuen, K. S., Ye, Z. W., Chan, C. P., & Jin, D. Y. (2020). A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: Lessons from other pathogenic viruses. Emerging Microbes & Infections, 9(1), 558–570. https://doi.org/10.1080/22221751.2020.1736644
  • Gademann, K., & Portmann, C. (2008). Secondary metabolites from cyanobacteria: Complex structures and powerful bioactivities. Current Organic Chemistry, 12(4), 326–341. https://doi.org/10.2174/138527208783743750
  • Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of covid-19 associated pneumonia in clinical studies. Bioscience Trends, 14(1), 72–73. https://doi.org/10.5582/bst.2020.01047
  • Gerwick, W. H., Coates, R. C., Engene, N., Gerwick, L., Grindberg, R. V., Jones, A. C., & Sorrels, C. M. (2008). Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe Magazine, 3(6), 277–284. https://doi.org/10.1128/microbe.3.277.1
  • Gilbert, J. A., & Dupont, C. L. (2011). Microbial metagenomics: Beyond the genome. Annual Review of Marine Science, 3(1), 347–371. https://doi.org/10.1146/annurev-marine-120709-142811
  • Graham, R. L., Donaldson, E. F., & Baric, R. S. (2013). A decade after sars: Strategies for controlling emerging coronaviruses. Nature Reviews. Microbiology, 11(12), 836–848. https://doi.org/10.1038/nrmicro3143
  • Group, R. C. (2020). Dexamethasone in hospitalized patients with covid-19—preliminary report. New England Journal of Medicine, 34(4), 1241–1243.
  • Guarner, J. (2020). Three emerging coronaviruses in two decades: The story of sars, mers, and now covid-19. Oxford University Press US, 153(4), 420-421.
  • Gupta, A. M., Chakrabarti, J., & Mandal, S. (2020). Non-synonymous mutations of sars-cov-2 leads epitope loss and segregates its variants. Microbes and Infection, 22(10), 598–607. https://doi.org/10.1016/j.micinf.2020.10.004
  • Gupta, D. K., Kaur, P., Leong, S. T., Tan, L. T., Prinsep, M. R., & Chu, J. J. H. (2014). Anti-chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium trichodesmium erythraeum. Marine Drugs, 12(1), 115–127. https://doi.org/10.3390/md12010115
  • Han, B. N., Liang, T. T., Keen, L. J., Fan, T. T., Zhang, X. D., Xu, L., Zhao, Q., Wang, S. P., & Lin, H. W. (2018). Two marine cyanobacterial aplysiatoxin polyketides, neo-debromoaplysiatoxin a and b, with k + channel inhibition activity. Organic Letters, 20(3), 578–581. https://doi.org/10.1021/acs.orglett.7b03672
  • Hapuarachchi, H. C., Bandara, K. B. A. T., Sumanadasa, S. D. M., Hapugoda, M. D., Lai, Y.-L., Lee, K.-S., Tan, L.-K., Lin, R. T. P., Ng, L. F. P., Bucht, G., Abeyewickreme, W., & Ng, L.-C. (2010). Re-emergence of chikungunya virus in south-east asia: Virological evidence from sri lanka and singapore. Journal of General Virology, 91(4), 1067–1076. https://doi.org/10.1099/vir.0.015743-0
  • Hayashi, K., Hayashi, T., & Kojima, I. (1996). A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses, 12(15), 1463–1471. https://doi.org/10.1089/aid.1996.12.1463
  • Hayashi, O., Katoh, T., & Okuwaki, Y. (1994). Enhancement of antibody production in mice by dietary Spirulina platensis. Journal of Nutritional Science and Vitaminology, 40(5), 431–441. https://doi.org/10.3177/jnsv.40.431
  • He, Y., Zhou, Y., Liu, S., Kou, Z., Li, W., Farzan, M., & Jiang, S. (2004). Receptor-binding domain of sars-cov spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine. Biochemical and Biophysical Research Communications, 324(2), 773–781. https://doi.org/10.1016/j.bbrc.2004.09.106
  • Hernández-Corona, A., Nieves, I., Meckes, M., Chamorro, G., & Barron, B. L. (2002). Antiviral activity of spirulina maxima against herpes simplex virus type 2. Antiviral Research, 56(3), 279–285. https://doi.org/10.1016/S0166-3542(02)00132-8
  • Hodcroft, E. B., Zuber, M., Nadeau, S., Comas, I., Candelas, F. G., Stadler, T., & Neher, R. A. (2020). Emergence and spread of a sars-cov-2 variant through europe in the summer of 2020. MedRxiv.
  • Hofmann, H., Geier, M., Marzi, A., Krumbiegel, M., Peipp, M., Fey, G. H., Gramberg, T., & Pöhlmann, S. (2004). Susceptibility to sars coronavirus s protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochemical and Biophysical Research Communications, 319(4), 1216–1221. https://doi.org/10.1016/j.bbrc.2004.05.114
  • Hou, Y. J., Chiba, S., Halfmann, P., Ehre, C., Kuroda, M., Dinnon, K. H., Leist, S. R., Schäfer, A., Nakajima, N., Takahashi, K., Lee, R. E., Mascenik, T. M., Graham, R., Edwards, C. E., Tse, L. V., Okuda, K., Markmann, A. J., Bartelt, L., de Silva, A., … Baric, R. S. (2020). Sars-cov-2 d614g variant exhibits efficient replication ex vivo and transmission in vivo. Science (New York, N.Y.), 370(6523), 1464–1468. https://doi.org/10.1126/science.abe8499
  • Huang, C., Qi, J., Lu, G., Wang, Q., Yuan, Y., Wu, Y., Zhang, Y., Yan, J., & Gao, G. F. (2016). Putative receptor binding domain of bat-derived coronavirus hku9 spike protein: Evolution of betacoronavirus receptor binding motifs. Biochemistry, 55(43), 5977–5988. https://doi.org/10.1021/acs.biochem.6b00790
  • Hui, D. S., Memish, Z. A., & Zumla, A. (2014). Severe acute respiratory syndrome vs. The middle east respiratory syndrome. Current Opinion in Pulmonary Medicine, 20(3), 233–241. https://doi.org/10.1097/MCP.0000000000000046
  • Huskens, D., Férir, G., Vermeire, K., Kehr, J. C., Balzarini, J., Dittmann, E., & Schols, D. (2010). Microvirin, a novel α (1, 2)-mannose-specific lectin isolated from microcystis aeruginosa, has anti-hiv-1 activity comparable with that of cyanovirin-n but a much higher safety profile. Journal of Biological Chemistry, 285(32), 24845–24854. https://doi.org/10.1074/jbc.M110.128546
  • Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T., Leong-Poi, H., Crackower, M. A., Fukamizu, A., Hui, C.-C., Hein, L., Uhlig, S., Slutsky, A. S., Jiang, C., & Penninger, J. M. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436(7047), 112–116. https://doi.org/10.1038/nature03712
  • Imhoff, J. F., Labes, A., & Wiese, J. (2011). Bio-mining the microbial treasures of the ocean: New natural products. Biotechnology Advances, 29(5), 468–482. https://doi.org/10.1016/j.biotechadv.2011.03.001
  • Kanekiyo, K., Hayashi, K., Takenaka, H., Lee, J. B., & Hayashi, T. (2007). Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga nostoc flagelliforme. Biological & Pharmaceutical Bulletin, 30(8), 1573–1575. https://doi.org/10.1248/bpb.30.1573
  • Kanekiyo, K., Lee, J. B., Hayashi, K., Takenaka, H., Hayakawa, Y., Endo, S., & Hayashi, T. (2005). Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, nostoc f lagelliforme. Journal of Natural Products, 68(7), 1037–1041. https://doi.org/10.1021/np050056c
  • Kehr, J. C., Zilliges, Y., Springer, A., Disney, M. D., Ratner, D. D., Bouchier, C., Seeberger, P. H., De Marsac, N. T., & Dittmann, E. (2006). A mannan binding lectin is involved in cell–cell attachment in a toxic strain of microcystis aeruginosa. Molecular Microbiology, 59(3), 893–906. https://doi.org/10.1111/j.1365-2958.2005.05001.x
  • Kelleni, M. T. (2021). Tocilizumab, remdesivir, favipiravir, and dexamethasone repurposed for covid-19: A comprehensive clinical and pharmacovigilant reassessment. SN Comprehensive Clinical Medicine, 1–5.
  • Khandia, R., Munjal, A., Dhama, K., Karthik, K., Tiwari, R., Malik, Y. S., Singh, R. K., & Chaicumpa, W. (2018). Modulation of dengue/zika virus pathogenicity by antibody-dependent enhancement and strategies to protect against enhancement in zika virus infection. Frontiers in Immunology, 9, 597. https://doi.org/10.3389/fimmu.2018.00597
  • Kim, S. K. (2013). Marine microbiology: Bioactive compounds and biotechnological applications. John Wiley & Sons.
  • Kim, T. W., Lee, J. H., Hung, C.-F., Peng, S., Roden, R., Wang, M.-C., Viscidi, R., Tsai, Y.-C., He, L., Chen, P.-J., Boyd, D. A. K., & Wu, T.-C. (2004). Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. Journal of Virology, 78(9), 4638–4645. https://doi.org/10.1128/JVI.78.9.4638-4645.2004
  • Klasse, P. J., Shattock, R., & Moore, J. P. (2008). Antiretroviral drug–based microbicides to prevent hiv-1 sexual transmission. Annual Review of Medicine, 59(1), 455–471. https://doi.org/10.1146/annurev.med.59.061206.112737
  • Knübel, G., Larsen, L. K., Moore, R. E., Levine, I. A., & Patterson, G. M. L. (1990). Cytotoxic, antiviral indolocarbazoles from a blue-green alga belonging to the nostocaceae. The Journal of Antibiotics, 43(10), 1236–1239. https://doi.org/10.7164/antibiotics.43.1236
  • Koyama, T., Weeraratne, D., Snowdon, J. L., & Parida, L. (2020). Emergence of drift variants that may affect covid-19 vaccine development and antibody treatment. Pathogens, 9(5), 324. https://doi.org/10.3390/pathogens9050324
  • Kozlovskaya, L., Piniaeva, A., Ignatyev, G., Selivanov, A., Shishova, A., Kovpak, A., Gordeychuk, I., Ivin, Y., Berestovskaya, A., Prokhortchouk, E., Protsenko, D., Rychev, M., & Ishmukhametov, A. (2020). Isolation and phylogenetic analysis of sars-cov-2 variants collected in russia during the covid-19 outbreak. International Journal of Infectious Diseases, 99, 40–46. https://doi.org/10.1016/j.ijid.2020.07.024
  • Larsen, L. K., Moore, R. E., & Patterson, G. M. L. (1994). β-Carbolines from the blue-green alga Dichothrix baueriana. Journal of Natural Products, 57(3), 419–421. https://doi.org/10.1021/np50105a018
  • Lee, C. J., Huang, Y. C., Yang, S., Tsao, K. C., Chen, C. J., Hsieh, Y. C., Chiu, C. H., & Lin, T. Y. (2014). Clinical features of coxsackievirus a4, b3 and b4 infections in children. PloS One., 9(2), e87391. https://doi.org/10.1371/journal.pone.0087391
  • LewisOscar, F., Nithya, C., Alharbi, S. A., Alharbi, N. S., & Thajuddin, N. (2018). Microfouling inhibition of human nosocomial pathogen pseudomonas aeruginosa using marine cyanobacteria. Microbial Pathogenesis, 114, 107–115. https://doi.org/10.1016/j.micpath.2017.11.048
  • Li, P., Harding, S. E., & Liu, Z. (2001). Cyanobacterial exopolysaccharides: their nature and potential biotechnological applications. Biotechnology and Genetic Engineering Reviews, 18, 375–404. https://doi.org/10.1080/02648725.2001.10648020
  • Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
  • Liang, Y., Wang, M.-L., Chien, C.-S., Yarmishyn, A. A., Yang, Y.-P., Lai, W.-Y., Luo, Y.-H., Lin, Y.-T., Chen, Y.-J., Chang, P.-C., & Chiou, S.-H. (2020). Highlight of immune pathogenic response and hematopathologic effect in sars-cov, mers-cov, and sars-cov-2 infection. Frontiers in Immunology, 11, 1022. https://doi.org/10.3389/fimmu.2020.01022
  • Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the sars coronavirus. Nature, 426(6965), 450–454. https://doi.org/10.1038/nature02145
  • Li, W., Sui, J., Huang, I. C., Kuhn, J. H., Radoshitzky, S. R., Marasco, W. A., Choe, H., & Farzan, M. (2007). The s proteins of human coronavirus nl63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ace2. Virology, 367(2), 367–374. https://doi.org/10.1016/j.virol.2007.04.035
  • Liu, L., Jokela, J., Wahlsten, M., Nowruzi, B., Permi, P., Zhang, Y. Z., Xhaard, H., Fewer, D. P., & Sivonen, K. (2014). Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium nostoc sp. Strain fsn. Journal of Natural Products, 77(8), 1784–1790. https://doi.org/10.1021/np500106w
  • Li, Q., Wu, J., Nie, J., Zhang, L., Hao, H., Liu, S., Zhao, C., Zhang, Q., Liu, H., Nie, L., Qin, H., Wang, M., Lu, Q., Li, X., Sun, Q., Liu, J., Zhang, L., Li, X., Huang, W., & Wang, Y. (2020). The impact of mutations in sars-cov-2 spike on viral infectivity and antigenicity. Cell, 182(5), 1284–1294. https://doi.org/10.1016/j.cell.2020.07.012
  • Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., Wong, S.-K., Huang, I.-C., Xu, K., Vasilieva, N., Murakami, A., He, Y., Marasco, W. A., Guan, Y., Choe, H., & Farzan, M. (2005). Receptor and viral determinants of sars‐coronavirus adaptation to human ace2. The EMBO Journal, 24(8), 1634–1643. https://doi.org/10.1038/sj.emboj.7600640
  • Lopes, V. R., Schmidtke, M., Fernandes, M. H., Martins, R., & Vasconcelos, V. (2011). Cytotoxicity in l929 fibroblasts and inhibition of herpes simplex virus type 1 kupka by estuarine cyanobacteria extracts. Toxicology in Vitro : Vitro, 25(4), 944–950. https://doi.org/10.1016/j.tiv.2011.03.003
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Lynch, M., Ackerman, M. S., Gout, J. F., Long, H., Sung, W., Thomas, W. K., & Foster, P. L. (2016). Genetic drift, selection and the evolution of the mutation rate. Nature Reviews. Genetics, 17(11), 704–714. https://doi.org/10.1038/nrg.2016.104
  • Mandal, S., & Rath, J. (2014). Extremophilic cyanobacteria for novel drug development. Springer.
  • Mandal, S., & Rath, J. (2015). Issues and challenges of drug development from cyanobacteria. Extremophilic cyanobacteria for novel drug development (pp. 79–89). Springer.
  • Mansour, H., Shoman, S., & Kdodier, M. (2011). Antiviral effect of edaphic cyanophytes on rabies and herpes-1 viruses. Acta Biologica Hungarica, 62(2), 194–203. https://doi.org/10.1556/ABiol.62.2011.2.9
  • Masters, P. S. (2006). The molecular biology of coronaviruses. Advances in Virus Research, 66, 193–292. https://doi.org/10.1016/S0065-3527(06)66005-3
  • Mendiola, J., Jaime, L., Santoyo, S., Reglero, G., Cifuentes, A., Ibañez, E., & Señoráns, F. (2007). Screening of functional compounds in supercritical fluid extracts from spirulina platensis. Food Chemistry, 102(4), 1357–1367. https://doi.org/10.1016/j.foodchem.2006.06.068
  • Miłek, J., & Blicharz-Domańska, K. (2018). Coronaviruses in avian species–review with focus on epidemiology and diagnosis in wild birds. Journal of Veterinary Research, 62(3), 249–255. https://doi.org/10.2478/jvetres-2018-0035
  • Mohamud, Y., Shi, J., Qu, J., Poon, T., Xue, Y. C., Deng, H., Zhang, J., & Luo, H. (2018). Enteroviral infection inhibits autophagic flux via disruption of the snare complex to enhance viral replication. Cell Reports, 22(12), 3292–3303. https://doi.org/10.1016/j.celrep.2018.02.090
  • Moore, R. E., Blackman, A. J., Cheuk, C. E., Mynderse, J. S., Matsumoto, G. K., Clardy, J., Woodard, R. W., & Craig, J. C. (1984). Absolute stereochemistries of the aplysiatoxins and oscillatoxin a. The Journal of Organic Chemistry, 49(13), 2484–2489. https://doi.org/10.1021/jo00187a035
  • Muthumani, K., Falzarano, D., Reuschel, E. L., Tingey, C., Flingai, S., Villarreal, D. O., Wise, M., Patel, A., Izmirly, A., & Aljuaid, A. (2015). A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against middle east respiratory syndrome coronavirus in nonhuman primates. Science Translational Medicine, 7(301), 301–132.
  • Mynderse, J. S., & Moore, R. E. (1978). Toxins from blue-green algae: Structures of oscillatoxin a and three related bromine-containing toxins. The Journal of Organic Chemistry, 43(11), 2301–2303. https://doi.org/10.1021/jo00405a053
  • Naidoo, D., Roy, A., Kar, P., Mutanda, T., & Anandraj, A. (2020). Cyanobacterial metabolites as promising drug leads against the mpro and plpro of sars-cov-2: An in silico analysis. Journal of Biomolecular Structure and Dynamics, 1–13.
  • Namikoshi, M., & Rinehart, K. (1996). Bioactive compounds produced by cyanobacteria. Journal of Industrial Microbiology & Biotechnology, 17(5-6), 373–384. https://doi.org/10.1007/BF01574768
  • Neilan, B. A., Dittmann, E., Rouhiainen, L., Bass, R. A., Schaub, V., Sivonen, K., & Börner, T. (1999). Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. Journal of Bacteriology, 181(13), 4089–4097. https://doi.org/10.1128/JB.181.13.4089-4097.1999
  • Niedermeyer, T. H. J. (2015). Anti-infective natural products from cyanobacteria. Planta Medica, 81(15), 1309–1325. https://doi.org/10.1055/s-0035-1546055
  • Nowruzi, B., & Blanco, S. (2019). In silico identification and evolutionary analysis of candidate genes involved in the biosynthesis methylproline genes in cyanobacteria strains of iran. Phytochemistry Letters, 29, 199–211. https://doi.org/10.1016/j.phytol.2018.12.011
  • Nowruzi, B., Blanco, S., & Nejadsattari, T. (2018a). Chemical and molecular evidences for the poisoning of a duck by anatoxin-a, nodularin and cryptophycin at the coast of lake shoormast (mazandaran province, iran). International Journal on Algae, 20(4), 359–376. https://doi.org/10.1615/InterJAlgae.v20.i4.30
  • Nowruzi, B., Haghighat, S., Fahimi, H., & Mohammadi, E. (2018b). Nostoc cyanobacteria species: A new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research, 9(1), 5–12. https://doi.org/10.1111/jphs.12202
  • Nowruzi, B., Khavari-Nejad, R. A., Sivonen, K., Kazemi, B., Najafi, F., & Nejadsattari, T. (2012). Identification and toxigenic potential of a nostoc sp. Algae, 27(4), 303–313. https://doi.org/10.4490/algae.2012.27.4.303
  • Nowruzi, B., Khavari-Nejad, R. A., Sivonen, K., Kazemi, B., Najafi, F., & Nejadsattari, T. (2013). Identification and toxigenic potential of a cyanobacterial strain (stigomena sp.). Progress in Biological Sciences, 3(1), 79–85.
  • Nowruzi, B., Nejad Sattari, T., & Jokela, J. (2019). A report on finding a new peptide aldehyde from cyanobacterium nostoc sp. Bahar m by lc-ms and marfey’s analysis. Iranian Journal of Biotechnology, 17(2), 71–78. https://doi.org/10.21859/ijb.1853
  • Nowruzi, B., & Porzani, S. J. (2020). Toxic compounds produced by cyanobacteria belonging to several species of the order nostocales: A review. Journal of Applied Toxicology, 41(4), 510–548.
  • Nowruzi, B., Sarvari, G., & Blanco, S. (2020). Applications of cyanobacteria in biomedicine. Handb algal sci microbiol technol med. Elsevier.
  • Onofrejová, L., Vašíčková, J., Klejdus, B., Stratil, P., Mišurcová, L., Kráčmar, S., Kopecký, J., & Vacek, J. (2010). Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 464–470. https://doi.org/10.1016/j.jpba.2009.03.027
  • Patterson, G. M. L., Baker, K. K., Baldwin, C. L., Bolis, C. M., Caplan, F. R., Larsen, L. K., Lavine, I. A., Moore, R. E., Nelson, C. S., Tschappat, K. D., Tuang, G. D., Boyd, M. R., Cardellina, J. H., Collins, R. P., Gustafson, K. R., Snader, K. M., Weisloi, O. S., & Lewin, R. A. (1993). Antiviral activity of cultured blue‐green algae (Cyanophyta). Journal of Phycology, 29(1), 125–130. https://doi.org/10.1111/j.1529-8817.1993.tb00290.x
  • Paules, C. I., Marston, H. D., & Fauci, A. S. (2020). Coronavirus infections—more than just the common cold. JAMA, 323(8), 707–708. https://doi.org/10.1001/jama.2020.0757
  • Pillaiyar, T., Meenakshisundaram, S., & Manickam, M. (2020). Recent discovery and development of inhibitors targeting coronaviruses. Drug Discovery Today, 25(4), 668–688. https://doi.org/10.1016/j.drudis.2020.01.015
  • Plante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., Lokugamage, K. G., Zhang, X., Muruato, A. E., Zou, J., & Fontes-Garfias, C. R. (2020). Spike mutation d614g alters sars-cov-2 fitness. Nature, 1–6.
  • Pothula, P. (2020) Spirulina extract enhances T-cell responses targeting spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A potential drug candidate for treatment of COVID 19. American-Eurasian Journal of Toxicological Sciences, 12(1), 8-13.
  • Raja, R., Hemaiswarya, S., Ganesan, V., & Carvalho, I. S. (2016). Recent developments in therapeutic applications of cyanobacteria. Critical Reviews in Microbiology, 42(3), 394–405. https://doi.org/10.3109/1040841X.2014.957640
  • Rajabpour, N., Nowruzi, B., & Ghobeh, M. (2019). Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biologica Slovenica, 62(2), 3-14.
  • Rechter, S., König, T., Auerochs, S., Thulke, S., Walter, H., Dörnenburg, H., Walter, C., & Marschall, M. (2006). Antiviral activity of arthrospira-derived spirulan-like substances. Antiviral Research, 72(3), 197–206. https://doi.org/10.1016/j.antiviral.2006.06.004
  • Sami, N., Ahmad, R., & Fatma, T. (2020). Exploring algae and cyanobacteria as a promising natural source of antiviral drug against sars-cov-2. Biomedical Journal, https://doi.org/10.1016/j.bj.2020.11.014
  • Sangbum, W., Dongsool, Y., & Sungsook, C. (2015). Anti-helicobacter and anti-inflammatory effects of ethanol extract of sohamhyoongtang in helicobacter pylori-induced inflammation in human gastric epithelial ags cells.
  • Sawicki, S., & Sawicki, D. (2005). Coronavirus transcription: A perspective. Coronavirus replication and reverse genetics (pp. 31–55). Springer.
  • Schweder, T., Markert, S., & Hecker, M. (2008). Proteomics of marine bacteria. Electrophoresis, 29(12), 2603–2616. https://doi.org/10.1002/elps.200800009
  • Shalaby, E. A., & Dubey, N. (2018). Polysaccharides from cyanobacteria: Response to biotic and abiotic stress and their antiviral activity. Indian Journal of Geo Marine Sciences, 47(1), 21–33.
  • Siddiqi, H. K., Libby, P., & Ridker, P. M. (2021). Covid-19–a vascular disease. Trends in Cardiovascular Medicine, 31(1), 1–7. https://doi.org/10.1016/j.tcm.2020.10.005
  • Singh, R. K., Tiwari, S. P., Rai, A. K., & Mohapatra, T. M. (2011). Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics, 64(6), 401–412. https://doi.org/10.1038/ja.2011.21
  • Singh, S., Kate, B. N., & Banerjee, U. (2005). Bioactive compounds from cyanobacteria and microalgae: An overview. Critical Reviews in Biotechnology, 25(3), 73–95. https://doi.org/10.1080/07388550500248498
  • Singhal, T. (2020). A review of coronavirus disease-2019 (covid-19). Indian Journal of Pediatrics, 87(4), 281–286. https://doi.org/10.1007/s12098-020-03263-6
  • Skulberg, O. M. (2004). 30 bioactive chemicals in microalgae. Handbook of microalgal culture: biotechnology and applied phycology (p. 485). CRC Press.
  • Sun, C., Chen, L., Yang, J., Luo, C., Zhang, Y., Li, J., Yang, J., Zhang, J., & Xie, L. (2020). Sars-cov-2 and sars-cov spike-rbd structure and receptor binding comparison and potential implications on neutralizing antibody and vaccine development. Biorxiv.
  • Surakka, A., Sihvonen, L. M., Lehtimäki, J. M., Wahlsten, M., Vuorela, P., & Sivonen, K. (2005). Benthic cyanobacteria from the baltic sea contain cytotoxic anabaena, nodularia, and nostoc strains and an apoptosis‐inducing phormidium strain. Environmental Toxicology, 20(3), 285–292. https://doi.org/10.1002/tox.20119
  • Sutherland, I. W. (1994). Structure function relationships in microbial exopolysaccharides. Biotechnology Advances, 12, 393–448.
  • Swain, S. S., Paidesetty, S. K., & Padhy, R. N. (2017). Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 90, 760–776. https://doi.org/10.1016/j.biopha.2017.04.030
  • Talero, E., García-Mauriño, S., Ávila-Román, J., Rodríguez-Luna, A., Alcaide, A., & Motilva, V. (2015). Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Marine Drugs, 13(10), 6152–6209. https://doi.org/10.3390/md13106152
  • Tan, B. S., Dunnick, N. R., Gangi, A., Goergen, S., Jin, Z. Y., Neri, E., Nomura, C. H., Pitcher, R., Yee, J., & Mahmood, U. (2020). Rsna international trends: A global perspective on the covid-19 pandemic and radiology in late 2020. Radiology, 204267
  • Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., & Lu, J. (2020). On the origin and continuing evolution of sars-cov-2. National Science Review, 7(6), 1012–1023.
  • Tasnim, S., Rahman, M., Pawar, P., Chi, X., Yu, Q., Zou, L., Sultana, A., McKyer, E. L. J., Ma, P., & Hossain, M. M. (2020). Epidemiology of sleep disorders during covid-19 pandemic: A systematic scoping review. MedRxiv.
  • Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E. J., & Msomi, N. (2020). Emergence and rapid spread of a new severe acute. respiratory syndrome-related coronavirus 2 (sars-cov-2) lineage with multiple spike mutations in south africa. MedRxiv.
  • Teneva, I., Asparuhova, D., Dzhambazov, B., Mladenov, R., & Schirmer, K. (2003). The freshwater cyanobacterium lyngbya aerugineo‐coerulea produces compounds toxic to mice and to mammalian and fish cells. Environmental Toxicology, 18(1), 9–20. https://doi.org/10.1002/tox.10096
  • Theoharides, T., & Conti, P. (2020). Dexamethasone for covid-19? Not so fast. J Biol Regul Homeost Agents, 34(3), 10–23812.
  • Thomson, E. C., Rosen, L. E., Shepherd, J. G., Spreafico, R., da Silva Filipe, A., Wojcechowskyj, J. A., Davis, C., Piccoli, L., Pascall, D. J., & Dillen, J. (2020). The circulating sars-cov-2 spike variant n439k maintains fitness while evading antibody-mediated immunity. BioRxiv.
  • Tirado, S. M. C., & Yoon, K. J. (2003). Antibody-dependent enhancement of virus infection and disease. Viral Immunology, 16(1), 69–86. https://doi.org/10.1089/088282403763635465
  • Vasas, G., Borbely, G., Nanasi, P., & Nanasi, P. P. Alkaloids from cyanobacteria with diverse powerful bioactivities. Mini-Reviews in Medicinal Chemistry, 10(10), 946–955. https://doi.org/10.2174/138955710792007231
  • Volz, E., Hill, V., McCrone, J. T., Price, A., Jorgensen, D., O’Toole, Á., Southgate, J., Johnson, R., Jackson, B., Nascimento, F. F., Rey, S. M., Nicholls, S. M., Colquhoun, R. M., da Silva Filipe, A., Shepherd, J., Pascall, D. J., Shah, R., Jesudason, N., Li, K., … Neaverson, A. S. (2021). Evaluating the effects of sars-cov-2 spike mutation d614g on transmissibility and pathogenicity. Cell, 184(1), 64–75.e11. https://doi.org/10.1016/j.cell.2020.11.020
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein. Cell, 181(2), 281–292. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, S.-F., Tseng, S.-P., Yen, C.-H., Yang, J.-Y., Tsao, C.-H., Shen, C.-W., Chen, K.-H., Liu, F.-T., Liu, W.-T., Chen, Y.-M A., & Huang, J. C. (2014). Antibody-dependent sars coronavirus infection is mediated by antibodies against spike proteins. Biochemical and Biophysical Research Communications, 451(2), 208–214. https://doi.org/10.1016/j.bbrc.2014.07.090
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from wuhan: An analysis based on decade-long structural studies of sars coronavirus. Journal of Virology, 94(7), e00127-20. https://doi.org/10.1128/JVI.00127-20
  • Wan, Y., Shang, J., Sun, S., Tai, W., Chen, J., Geng, Q., He, L., Chen, Y., Wu, J., Shi, Z., Zhou, Y., Du, L., & Li, F. (2020b). Molecular mechanism for antibody-dependent enhancement of coronavirus entry. Journal of Virology, 94(5), e02015-19. https://doi.org/10.1128/JVI.02015-19
  • Woyke, T., Xie, G., Copeland, A., González, J. M., Han, C., Kiss, H., Saw, J. H., Senin, P., Yang, C., Chatterji, S., Cheng, J.-F., Eisen, J. A., Sieracki, M. E., & Stepanauskas, R. (2009). Assembling the marine metagenome, one cell at a time. PloS One., 4(4), e5299. https://doi.org/10.1371/journal.pone.0005299
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-em structure of the 2019-ncov spike in the prefusion conformation. Science, 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., & Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of spirulina: An overview. Archives of Toxicology, 90(8), 1817–1840. https://doi.org/10.1007/s00204-016-1744-5
  • Xian, Y., Zhang, J., Bian, Z., Zhou, H., Zhang, Z., Lin, Z., & Xu, H. (2020). Bioactive natural compounds against human coronaviruses: A review and perspective. Acta Pharmaceutica Sinica. B, 10(7), 1163–1174. https://doi.org/10.1016/j.apsb.2020.06.002
  • Xiong, S., Fan, J., & Kitazato, K. (2010). The antiviral protein cyanovirin-n: The current state of its production and applications. Applied Microbiology and Biotechnology, 86(3), 805–812. https://doi.org/10.1007/s00253-010-2470-1
  • Xiong, C., O'Keefe, B. R., Byrd, R. A., & McMahon, J. B. (2006). Potent anti-hiv activity of scytovirin domain 1 peptide. Peptides, 27(7), 1668–1675. https://doi.org/10.1016/j.peptides.2006.03.018
  • Yadav, S., Sinha, R., Tyagi, M., & Kumar, A. (2011). Cyanobacterial secondary metabolites. International Journal of Pharma Bio Sciences, 2(1), 144–167.
  • Yakoot, M., & Salem, A. (2012). Spirulina platensis versus silymarin in the treatment of chronic hepatitis c virus infection. A pilot randomized, comparative clinical trial. BMC Gastroenterology, 12(1), 32 https://doi.org/10.1186/1471-230X-12-32
  • Yang, H. N., Lee, E. H., & Kim, H. M. (1997). Spirulina platensis inhibits anaphylactic reaction. Life Sciences, 61(13), 1237–1244. https://doi.org/10.1016/S0024-3205(97)00668-1
  • Yeom, J. S., Park, J. S., Kim, Y.-S., Kim, R. B., Choi, D.-S., Chung, J.-Y., Han, T.-H., Seo, J.-H., Park, E. S., Lim, J.-Y., Woo, H.-O., Youn, H.-S., & Park, C.-H. (2019). Neonatal seizures and white matter injury: Role of rotavirus infection and probiotics. Brain and Development, 41(1), 19–28. https://doi.org/10.1016/j.braindev.2018.07.001
  • Yin, C. (2020). Genotyping coronavirus sars-cov-2: Methods and implications. Genomics, 112(5), 3588–3596. https://doi.org/10.1016/j.ygeno.2020.04.016
  • Yong, C. Y., Ong, H. K., Yeap, S. K., Ho, K. L., & Tan, W. S. (2019). Recent advances in the vaccine development against middle east respiratory syndrome-coronavirus. Frontier Microbiology, 10, 1781.
  • Yu, F., Du, L., Ojcius, D. M., Pan, C., & Jiang, S. (2020). Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in wuhan, China. Microbes and Infection, 22(2), 74–79. https://doi.org/10.1016/j.micinf.2020.01.003
  • Zainuddin, E. N., Mentel, R., Wray, V., Jansen, R., Nimtz, M., Lalk, M., & Mundt, S. (2007). Cyclic depsipeptides, ichthyopeptins a and b, from microcystis ichthyoblabe. Journal of Natural Products, 70(7), 1084–1088. https://doi.org/10.1021/np060303s
  • Zainuddin, E., Mundt, S., Wegner, U., & Mentel, R. (2002). Cyanobacteria a potential source of antiviral substances against influenza virus. Medical microbiology and immunology, 191(3-4), 181–182. https://doi.org/10.1007/s00430-002-0142-1
  • Zhang, L., Jackson, C. B., Mou, H., Ojha, A., Peng, H., Quinlan, B. D., Rangarajan, E. S., Pan, A., Vanderheiden, A., Suthar, M. S., Li, W., Izard, T., Rader, C., Farzan, M., & Choe, H. (2020). Sars-cov-2 spike-protein d614g mutation increases virion spike density and infectivity. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-19808-4
  • Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y., & Zuo, W. (2020). Single-cell rna expression profiling of ace2, the receptor of sars-cov-2. BioRxiv.
  • Zheng, W., Chen, C., Cheng, Q., Wang, Y., & Chu, C. (2006). Oral administration of exopolysaccharide from aphanothece halophytica (chroococcales) significantly inhibits influenza virus (h1n1)-induced pneumonia in mice. International Immunopharmacology, 6(7), 1093–1099. https://doi.org/10.1016/j.intimp.2006.01.020
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zhu, Z., Lian, X., Su, X., Wu, W., Marraro, G. A., & Zeng, Y. (2020). From sars and mers to covid-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respiratory Research, 21(1), 1–14. https://doi.org/10.1186/s12931-020-01479-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.