183
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Biophysical characterization of structural and conformational changes in methylmethane sulfonate modified DNA leading to the frizzled backbone structure and strand breaks in DNA

, , , , , , & show all
Pages 7598-7611 | Received 19 Jun 2020, Accepted 01 Mar 2021, Published online: 15 Mar 2021

References

  • Abidi, M., Khan, M. S., Ahmad, S., Kausar, T., Nayeem, S. M., Islam, S., Ali, A., Alam, K. & Moinuddin, (2018). Biophysical and biochemical studies on glycoxidatively modified human low density lipoprotein. Archives of Biochemistry and Biophysics, 645, 87–99. https://doi.org/10.1016/j.abb.2018.02.019
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahmad, S., Moinuddin, Shahab, U., Habib, S., Salman Khan, M., Alam, K., & Ali, A. (2014). Glycoxidative damage to human DNA: Neo-antigenic epitopes on DNA molecule could be a possible reason for autoimmune response in type 1 diabetes. Glycobiology, 24(3), 281–291. https://doi.org/10.1093/glycob/cwt109
  • Aweda, T. A., & Meares, C. F. (2012). Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody–ligand interaction thermodynamics and kinetics. Methods, 56 (2), 145–153. https://doi.org/10.1016/j.ymeth.2011.09.011
  • Barnes, J. L., Zubair, M., John, K., Poirier, M. C., & Martin, F. L. (2018). Carcinogens and DNA damage. Biochemical Society Transactions, 46(5), 1213–1224. https://doi.org/10.1042/BST20180519
  • Behe, M., & Felsenfeld, G. (1981). Effects of methylation on a synthetic polynucleotide: The B-Z transition in poly(dG-m5dC).poly(dG-m5dC) . ).Proceedings of the National Academy of Sciences of the United States of America, 78(3), 1619–1623. https://doi.org/10.1073/pnas.78.3.1619
  • Beranek, D. T. (1990). Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutation Research, 231(1), 11–30. https://doi.org/10.1016/0027-5107(90)90173-2
  • Boysen, G., Pachkowski, B. F., Nakamura, J., & Swenberg, J. A. (2009). The formation and biological significance of N7-guanine adducts. Mutation Research, 678(2), 76–94. https://doi.org/10.1016/j.mrgentox.2009.05.006
  • Chatterjee, N., & Walker, G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. Environmental and Molecular Mutagenesis, 58(5), 235–263. https://doi.org/10.1002/em.22087
  • Chirico, G., Lunelli, L., & Baldini, G. (1990). Conformation of intercalated DNA plasmids investigated by circular dichroism and dynamic light scattering. Biophysical Chemistry, 38(3), 201–211. https://doi.org/10.1016/0301-4622(90)87002-3
  • Chiu, L. F., Huang, P. Y., Chiang, W. F., Wong, T. Y., Lin, S. H., Lee, Y. C., & Shieh, D. B. (2013). Oral cancer diagnostics based on infrared spectral markers and wax physisorption kinetics. Analytical and Bioanalytical Chemistry, 405(6), 1995–2007. https://doi.org/10.1007/s00216-012-6625-z
  • Chlebowicz, E., & Jachymczyk, W. J. (1979). Repair of MMS-induced DNA double-strand breaks in haploid cells of Saccharomyces cerevisiae, which requires the presence of a duplicate genome. Molecular & General Genetics: MGG, 167(3), 279–286. https://doi.org/10.1007/BF00267420
  • Choo, L. P., Mansfield, J. R., Pizzi, N., Somorjai, R. L., Jackson, M., Halliday, W. C., & Mantsch, H. H. (1995). Infrared spectra of human central nervous system tissue: Diagnosis of alzheimer's disease by multivariate analyses. Biospectroscopy, 1(2), 141–148. https://doi.org/10.1002/bspy.350010208
  • Clapp, N. K., Craig, A. W., & Toya, R. E. (1968). Oncogenicity by methyl methanesulfonate in male RF mice. Science (New York, N.Y.), 161(3844), 913–914. https://doi.org/10.1126/science.161.3844.913
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N•log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Doak, S. H., Jenkins, G. J. S., Johnson, G. E., Quick, E., Parry, E. M., & Parry, J. M. (2007). Mechanistic influences for mutation induction curves after exposure to DNA-reactive carcinogens. Cancer Research, 67(8), 3904–3911. https://doi.org/10.1158/0008-5472.CAN-06-4061
  • Drabløs, F., Feyzi, E., Aas, P. A., Vaagbø, C. B., Kavli, B., Bratlie, M. S., Peña-Diaz, J., Otterlei, M., Slupphaug, G., & Krokan, H. E. (2004). Alkylation damage in DNA and RNA-repair mechanisms and medical significance. DNA Repair, 3(11), 1389–1407. https://doi.org/10.1016/j.dnarep.2004.05.004
  • Eckel, R., Huo, H., Guan, H.-W., Hu, X., Che, X., & Huang, W.-D. (2001). Characteristic infrared spectroscopic patterns in the protein bands of human breast cancer tissue. Vibrational Spectroscopy, 27(2), 165–173. https://doi.org/10.1016/S0924-2031(01)00134-5
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Hajian, R., & Guan Huat, T. (2013). Spectrophotometric studies on the thermodynamics of the DS-DNA interaction with irinotecan for a better understanding of anticancer drug-DNA interactions. Journal of Spectroscopy, 2013(380352), 1–8. https://doi.org/10.1155/2013/380352
  • Hall, K. B., & Maestre, M. F. (1984). Temperature-dependent reversible transition of poly(dCdG).poly(dCdG) in ethanolic and methanolic solutions . Biopolymers, 23(11 Pt 1), 2127–2139. https://doi.org/10.1002/bip.360231103
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Horváthová, E., Slameňová, D., Hlinčı́ková, L., Mandal, T. K., Gábelová, A., & Collins, A. R. (1998). The nature and origin of DNA single-strand breaks determined with the comet assay. Mutation Research/DNA Repair, 409(3), 163–171. https://doi.org/10.1016/S0921-8777(98)00053-6
  • Hughes, C., Iqbal-Wahid, J., Brown, M., Shanks, J. H., Eustace, A., Denley, H., Hoskin, P. J., West, C., Clarke, N. W., & Gardner, P. (2013). FTIR microspectroscopy of selected rare diverse sub-variants of carcinoma of the urinary bladder. Journal of Biophotonics, 6(1), 73–87. https://doi.org/10.1002/jbio.201200126
  • Islam, B. U., Habib, S., Ahmad, P., Allarakha, S., Moinuddin, & Ali, A. (2015). Pathophysiological role of peroxynitrite induced DNA damage in human diseases: A special focus on poly(ADP-ribose) polymerase (PARP). Indian Journal of Clinical Biochemistry, 30(4), 368–385. https://doi.org/10.1007/s12291-014-0475-8
  • Ivanov, V. I., & Minyat, E. E. (1981). The transitions between left- and right-handed forms of poly(dG-dC)). Nucleic Acids Research, 9(18), 4783–4798. https://doi.org/10.1093/nar/9.18.4783
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Jangir, D. K., Tyagi, G., Mehrotra, R., & Kundu, S. (2010). Carboplatin interaction with calf-thymus DNA: A FTIR spectroscopic approach. Journal of Molecular Structure, 969(1-3), 126–129. https://doi.org/10.1016/j.molstruc.2010.01.052
  • Johnson, W. C. (1996). Determination of the conformation of nucleic acids by electronic CD. In G.D. Fasman (Eds.), Circular dichroism and the conformational analysis of biomolecules (pp. 433–465). Springer. https://doi.org/10.1007/978-1-4757-2508-7_12
  • Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., Diamantoglou, S., & Tajmir-Riahi, H. A. (2005). DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. Journal of Biomolecular Structure & Dynamics, 22(6), 719–724. https://doi.org/10.1080/07391102.2005.10507038
  • Khanmohammadi, M., & Garmarudi, A. B. (2011). Infrared spectroscopy provides a green analytical chemistry tool for direct diagnosis of cancer. TrAC Trends in Analytical Chemistry, 30(6), 864–874. https://doi.org/10.1016/j.trac.2011.02.009
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Li, X., Lin, J., Ding, J., Wang, S., Liu, Q., & Qing, S. (2004). Raman spectroscopy and fluorescence for the detection of liver cancer and abnormal liver tissue. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, 212–215. https://doi.org/10.1109/IEMBS.2004.1403129
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Lundin, C., North, M., Erixon, K., Walters, K., Jenssen, D., Goldman, A. S., & Helleday, T. (2005). Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Research, 33(12), 3799–3811. https://doi.org/10.1093/nar/gki681
  • Matsuo, N., & Ross, P. M. (1987). Measurement of interstrand cross-link frequency and distance between interruptions in DNA exposed to 4,5',8-trimethylpsoralen and near-ultraviolet light . Biochemistry, 26(7), 2001–2009. https://doi.org/10.1021/bi00381a033
  • McDonell, M. W., Simon, M. N., & Studier, F. W. (1977). Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. Journal of Molecular Biology, 110(1), 119–146. https://doi.org/10.1016/S0022-2836(77)80102-2
  • McIntyre, J., Sobolewska, A., Fedorowicz, M., McLenigan, M. P., Macias, M., Woodgate, R., & Sledziewska-Gojska, E. (2019). DNA polymerase ι is acetylated in response to SN2 alkylating agents. Scientific Reports, 9 (1), 4789. https://doi.org/10.1038/s41598-019-41249-3
  • Mello, M. L. S., & Vidal, B. C. (2012). Changes in the infrared microspectroscopic characteristics of DNA caused by cationic elements, different base richness and single-stranded form. PLoS One, 7 (8), e43169. https://doi.org/10.1371/journal.pone.0043169
  • Meunier-Prest, R. (2003). Direct measurement of the melting temperature of supported DNA by electrochemical method. Nucleic Acids Research, 31 (23), 150e–1150. https://doi.org/10.1093/nar/gng150
  • Miller, L. M., & Dumas, P. (2010). From structure to cellular mechanism with infrared microspectroscopy. Current Opinion in Structural Biology, 20(5), 649–656. https://doi.org/10.1016/j.sbi.2010.07.007
  • Mir, A. R., Habib, S., & Uddin, M. (2021). Recent advances in histone glycation: Emerging role in diabetes and cancer. Glycobiology, https://doi.org/10.1093/glycob/cwab011
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mossoba, M. M., Al-Khaldi, S. F., Kirkwood, J., Fry, F. S., Sedman, J., & Ismail, A. A. (2005). Printing microarrays of bacteria for identification by infrared microspectroscopy. Vibrational Spectroscopy, 38(1-2), 229–235. https://doi.org/10.1016/j.vibspec.2005.04.006
  • Newman, J. (1984). Dynamic light scattering as a probe of superhelical DNA-intercalating agent interaction. Biopolymers, 23(6), 1113–1119. https://doi.org/10.1002/bip.360230611
  • Nikolova, T., Ensminger, M., Löbrich, M., & Kaina, B. (2010). Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesulfonate. DNA Repair, 9(10), 1050–1063. https://doi.org/10.1016/j.dnarep.2010.07.005
  • Ninaber, A., & Goodfellow, J. M. (1998). The biological implications of damage to DNA incorporating an 8-oxodeoxyguanine:cytosine basepair. Journal of Biomolecular Structure & Dynamics, 16(3), 651–661. https://doi.org/10.1080/07391102.1998.10508277
  • Olmsted, J., & Kearns, D. R. (1977). Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry, 16(16), 3647–3654. https://doi.org/10.1021/bi00635a022
  • Ozdemir, A., Gursaclı, R. T., & Tekinay, T. (2014). Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA. Biological Trace Element Research, 158(2), 268–274. https://doi.org/10.1007/s12011-014-9924-8
  • Pancoska, P., Janota, V., & Keiderling, T. A. (1997). Novel approaches to protein structural analyses using combinations of optical spectroscopic methods (electronic and vibrational circular dichroism and FTIR studies). In P. Carmona, R. Navarro, A. Hernanz (Eds.), Spectroscopy of biological molecules: Modern trends (pp. 15–16). Springer. https://doi.org/10.1007/978-94-011-5622-6_5
  • Pascucci, B., Russo, M. T., Crescenzi, M., Bignami, M., & Dogliotti, E. (2005). The accumulation of MMS-induced single strand breaks in G1 phase is recombinogenic in DNA polymerase beta defective mammalian cells . Nucleic Acids Research, 33(1), 280–288. https://doi.org/10.1093/nar/gki168
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Poncin, K., Roba, A., Jimmidi, R., Potemberg, G., Fioravanti, A., Francis, N., Willemart, K., Zeippen, N., Machelart, A., Biondi, E. G., Muraille, E., Vincent, S. P., & De Bolle, X. (2019). Occurrence and repair of alkylating stress in the intracellular pathogen Brucella abortus. Nature Communications, 10(1), 4847. https://doi.org/10.1038/s41467-019-12516-8
  • Ronson, G. E., Piberger, A. L., Higgs, M. R., Olsen, A. L., Stewart, G. S., McHugh, P. J., Petermann, E., & Lakin, N. D. (2018). PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation. Nature Communications, 9 (1), 746.https://doi.org/10.1038/s41467-018-03159-2
  • Saha, A., Kaul, R., Murakami, M., & Robertson, E. S. (2010). Tumor viruses and cancer biology: Modulating signaling pathways for therapeutic intervention. Cancer Biology & Therapy, 10(10), 961–978. https://doi.org/10.4161/cbt.10.10.13923
  • Santos, R., Palos-Ladeiro, M., Besnard, A., Reggio, J., Vulliet, E., Porcher, J. M., Bony, S., Sanchez, W., & Devaux, A. (2013). Parental exposure to methyl methane sulfonate of three-spined stickleback: Contribution of DNA damage in male and female germ cells to further development impairment in progeny. Ecotoxicology (London, England), 22(5), 815–824. https://doi.org/10.1007/s10646-013-1088-3
  • Simsek Ozek, N., Tuna, S., Erson-Bensan, A. E., & Severcan, F. (2010). Characterization of microRNA-125b expression in MCF7 breast cancer cells by ATR-FTIR spectroscopy. The Analyst, 135(12), 3094–3102. https://doi.org/10.1039/c0an00543f
  • Stevens, A. J., Stuffrein-Roberts, S., Cree, S. L., Gibb, A., Miller, A. L., Doudney, K., Aitchison, A., Eccles, M. R., Joyce, P. R., Filichev, V. V., & Kennedy, M. A. (2014). G-quadruplex structures and CpG methylation cause drop-out of the maternal allele in polymerase chain reaction amplification of the imprinted MEST gene promoter. PLoS One, 9(12), e113955. https://doi.org/10.1371/journal.pone.0113955
  • Tantry, I. Q., Waris, S., Habib, S., Khan, R. H., Mahmood, R., & Ali, A. (2018). Hypochlorous acid induced structural and conformational modifications in human DNA: A multi-spectroscopic study. International Journal of Biological Macromolecules, 106, 551–558. https://doi.org/10.1016/j.ijbiomac.2017.08.051
  • Torres, P., Sodero, A., Jofily, P., & Silva, F. P. Jr, (2019). Key topics in molecular docking for drug design International Journal of Molecular Sciences, 20(18), 4574. https://doi.org/10.3390/ijms20184574
  • Tripathi, P., Moinuddin, Dixit, K., Mir, A. R., Habib, S., Alam, K., & Ali, A. (2014). Peroxynitrite modified DNA presents better epitopes for anti-DNA autoantibodies in diabetes type 1 patients. Cellular Immunology, 290(1), 30–38. https://doi.org/10.1016/j.cellimm.2014.04.012
  • Tubbs, A., & Nussenzweig, A. (2017). Endogenous DNA damage as a source of genomic instability in cancer. Cell, 168(4), 644–656. https://doi.org/10.1016/j.cell.2017.01.002
  • Tullman, J., Guntas, G., Dumont, M., & Ostermeier, M. (2011). Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA. Biotechnology and Bioengineering, 108(11), 2535–2543. https://doi.org/10.1002/bit.23224
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Verdonck, M., Denayer, A., Delvaux, B., Garaud, S., De Wind, R., Desmedt, C., Sotiriou, C., Willard-Gallo, K., & Goormaghtigh, E. (2016). Characterization of human breast cancer tissues by infrared imaging. The Analyst, 141(2), 606–619. https://doi.org/10.1039/c5an01512j
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Watanabe, S., Ichimura, T., Fujita, N., Tsuruzoe, S., Ohki, I., Shirakawa, M., Kawasuji, M., & Nakao, M. (2003). Methylated DNA-binding domain 1 and methylpurine-DNA glycosylase link transcriptional repression and DNA repair in chromatin. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12859–12864. https://doi.org/10.1073/pnas.2131819100
  • Wood, B. R., Kiupel, M., & McNaughton, D. (2014). Progress in Fourier transform infrared spectroscopic imaging applied to venereal cancer diagnosis. Veterinary Pathology, 51(1), 224–237. https://doi.org/10.1177/0300985813501340
  • Wyatt, M. D., & Pittman, D. L. (2006). Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chemical Research in Toxicology, 19(12), 1580–1594. https://doi.org/10.1021/tx060164e
  • Yang, K., Park, D., Tretyakova, N. Y., & Greenberg, M. M. (2018). Histone tails decrease N7-methyl-2'-deoxyguanosine depurination and yield DNA-protein cross-links in nucleosome core particles and cells. Proceedings of the National Academy of Sciences of the United States of America, 115(48), E11212–E11220. https://doi.org/10.1073/pnas.1813338115
  • Zheng, G., Fu, Y., & He, C. (2014). Nucleic acid oxidation in DNA damage repair and epigenetics. Chemical Reviews, 114(8), 4602–4620. https://doi.org/10.1021/cr400432d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.