390
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mechanistic insight on the inhibition of D, D-carboxypeptidase from Mycobacterium tuberculosis by β-lactam antibiotics: an ONIOM acylation study

, , ORCID Icon, , , , ORCID Icon, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 7645-7655 | Received 16 Dec 2020, Accepted 01 Mar 2021, Published online: 15 Mar 2021

References

  • Bauschlicher, C. W., Jr. (1995). A comparison of the accuracy of different functionals. Chemical Physics Letters, 246(1-2), 40–44. https://doi.org/10.1016/0009-2614(95)01089-R
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Biovia, D. S. (2017). Discovery studio modeling environment. Release.
  • Boonsri, P., Kuno, M., & Hannongbua, S. (2011). Key interactions of the mutant HIV-1 reverse transcriptase/efavirenz: An evidence obtained from ONIOM method. MedChemComm, 2(12), 1181–1187. https://doi.org/10.1039/c1md00162k
  • Calixto, A. R., Brás, N. F., Fernandes, P. A., & Ramos, M. J. (2014). Reaction mechanism of human renin studied by quantum mechanics/molecular mechanics (QM/MM) calculations. ACS Catalysis, 4(11), 3869–3876. https://doi.org/10.1021/cs500497f
  • Case, D. A., Darden, T., Cheatham, T., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Crowley, M., Walker, R. C., & Zhang, W. (2008). Amber 10. University of California.
  • Cordillot, M., Dubée, V., Triboulet, S., Dubost, L., Marie, A., Hugonnet, J.-E., Arthur, M., & Mainardi, J.-L. (2013). In vitro cross-linking of peptidoglycan by Mycobacterium tuberculosis L, D-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrobial Agents and Chemotherapy, 57(12), 5940–5945. https://doi.org/10.1128/AAC.01663-13
  • Correale, S., Ruggiero, A., Capparelli, R., Pedone, E., & Berisio, R. (2013). Structures of free and inhibited forms of the L,D-transpeptidase LdtMt1 from Mycobacterium tuberculosis. Acta Crystallographica. Section D, Biological Crystallography, 69(Pt 9), 1697–1706. https://doi.org/10.1107/S0907444913013085
  • Dasgupta, A., Datta, P., Kundu, M., & Basu, J. (2006). The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology, 152(Pt 2), 493–504. https://doi.org/10.1099/mic.0.28630-0
  • Demain, A. L., & Elander, R. P. (1999). The beta-lactam antibiotics: Past, present, and future. Antonie Van Leeuwenhoek, 75(1-2), 5–19. https://doi.org/10.1023/A:1001738823146
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView, version 5. Semichem Inc.
  • Dhar, N., Dubée, V., Ballell, L., Cuinet, G., Hugonnet, J.-E., Signorino-Gelo, F., Barros, D., Arthur, M., & McKinney, J. D. (2015). Rapid cytolysis of Mycobacterium tuberculosis by faropenem, an orally bioavailable β-lactam antibiotic. Antimicrobial Agents and Chemotherapy, 59(2), 1308–1319. https://doi.org/10.1128/AAC.03461-14
  • Dubée, V., Arthur, M., Fief, H., Triboulet, S., Mainardi, J.-L., Gutmann, L., Sollogoub, M., Rice, L. B., Ethève-Quelquejeu, M., & Hugonnet, J.-E. (2012). Kinetic analysis of Enterococcus faecium L, D-transpeptidase inactivation by carbapenems. Antimicrobial Agents and Chemotherapy, 56(6), 3409–3411. https://doi.org/10.1128/AAC.06398-11
  • Erdemli, S. B., Gupta, R., Bishai, W. R., Lamichhane, G., Amzel, L. M., & Bianchet, M. A. (2012). Targeting the cell wall of Mycobacterium tuberculosis: Structure and mechanism of L,D-transpeptidase 2. Structure, 20(12), 2103–2115. https://doi.org/10.1016/j.str.2012.09.016
  • Fakhar, Z., Govender, T., Lamichhane, G., Maguire, G. E., Kruger, H. G., & Honarparvar, B. (2017). Computational model for the acylation step of the β-lactam ring: Potential application for l, d-transpeptidase 2 in Mycobacterium tuberculosis. Journal of Molecular Structure, 1128, 94–102. https://doi.org/10.1016/j.molstruc.2016.08.049
  • Fakhar, Z., Naiker, S., Alves, C. N., Govender, T., Maguire, G. E., Lameira, J., Lamichhane, G., Kruger, H. G., & Honarparvar, B. (2016). A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. Journal of Biomolecular Structure & Dynamics, 34(11), 2399–2417. https://doi.org/10.1080/07391102.2015.1117397
  • Frisch, M., Trucks, G., Schlegel, H. B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., & Petersson, G. (2009). Gaussian 09, revision a. 02 (Vol. 200, p. 28). Gaussian Inc.
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity – A rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Gonzalez, C., & Schlegel, H. B. (1989). An improved algorithm for reaction path following. The Journal of Chemical Physics, 90(4), 2154–2161. https://doi.org/10.1063/1.456010
  • Gupta, R., Lavollay, M., Mainardi, J.-L., Arthur, M., Bishai, W. R., & Lamichhane, G. (2010). The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nature Medicine, 16(4), 466–469. https://doi.org/10.1038/nm.2120
  • Harvey, M., & De Fabritiis, G. (2009). An implementation of the smooth particle mesh Ewald method on GPU hardware. Journal of Chemical Theory and Computation, 5(9), 2371–2377. https://doi.org/10.1021/ct900275y
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Ibeji, C. U., Tolufashe, G. F., Ntombela, T., Govender, T., Maguire, G. E., Lamichhane, G., Kruger, H. G., & Honarparvar, B. (2018). The catalytic role of water in the binding site of l,d-transpeptidase 2 within acylation mechanism: A QM/MM (ONIOM) modelling. Tuberculosis, 113, 222–230. https://doi.org/10.1016/j.tube.2018.10.005
  • Janin, Y. L. (2007). Antituberculosis drugs: Ten years of research. Bioorganic & Medicinal Chemistry, 15(7), 2479–2513. https://doi.org/10.1016/j.bmc.2007.01.030
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kim, H. S., Kim, J., Im, H. N., Yoon, J. Y., An, D. R., Yoon, H. J., Kim, J. Y., Min, H. K., Kim, S.-J., Lee, J. Y., Han, B. W., & Suh, S. W. (2013). Structural basis for the inhibition of Mycobacterium tuberculosis L, D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. Acta Crystallographica Section D Biological Crystallography, 69(3), 420–431. https://doi.org/10.1107/S0907444912048998
  • Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density functional theory of electronic structure. The Journal of Physical Chemistry, 100(31), 12974–12980. https://doi.org/10.1021/jp960669l
  • Koul, A., Arnoult, E., Lounis, N., Guillemont, J., & Andries, K. (2011). The challenge of new drug discovery for tuberculosis. Nature, 469(7331), 483–490. https://doi.org/10.1038/nature09657
  • Kumar, P., Arora, K., Lloyd, J. R., Lee, I. Y., Nair, V., Fischer, E., Boshoff, H. I., & Barry, C. E., III. (2012). Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Molecular Microbiology, 86(2), 367–381. https://doi.org/10.1111/j.1365-2958.2012.08199.x
  • Kumar, P., Kaushik, A., Lloyd, E. P., Li, S.-G., Mattoo, R., Ammerman, N. C., Bell, D. T., Perryman, A. L., Zandi, T. A., Ekins, S., Ginell, S. L., Townsend, C. A., Freundlich, J. S., & Lamichhane, G. (2017). Non-classical transpeptidases yield insight into new antibacterials. Nature Chemical Biology, 13(1), 54–61. https://doi.org/10.1038/nchembio.2237
  • Lavollay, M., Arthur, M., Fourgeaud, M., Dubost, L., Marie, A., Riegel, P., Gutmann, L., & Mainardi, J. L. (2009). The beta-lactam-sensitive D,D-carboxypeptidase activity of Pbp4 controls the L,D and D,D transpeptidation pathways in Corynebacterium jeikeium. Molecular Microbiology, 74(3), 650–661. https://doi.org/10.1111/j.1365-2958.2009.06887.x
  • Lavollay, M., Arthur, M., Fourgeaud, M., Dubost, L., Marie, A., Veziris, N., Blanot, D., Gutmann, L., & Mainardi, J.-L. (2008). The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. Journal of Bacteriology, 190(12), 4360–4366. https://doi.org/10.1128/JB.00239-08
  • Lee, T.-S., Cerutti, D. S., Mermelstein, D., Lin, C., LeGrand, S., Giese, T. J., Roitberg, A., Case, D. A., Walker, R. C., & York, D. M. (2018). GPU-accelerated molecular dynamics and free energy methods in Amber18: Performance enhancements and new features. Journal of Chemical Information and Modeling, 58(10), 2043–2050. https://doi.org/10.1021/acs.jcim.8b00462
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins, 61(4), 704–721. https://doi.org/10.1002/prot.20660
  • Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O., & Dessen, A. (2006). Penicillin binding proteins: Key players in bacterial cell cycle and drug resistance processes. FEMS Microbiology Reviews, 30(5), 673–691. https://doi.org/10.1111/j.1574-6976.2006.00024.x
  • Mainardi, J.-L., Fourgeaud, M., Hugonnet, J.-E., Dubost, L., Brouard, J.-P., Ouazzani, J., Rice, L. B., Gutmann, L., & Arthur, M. (2005). A novel peptidoglycan cross-linking enzyme for a β-lactam-resistant transpeptidation pathway. The Journal of Biological Chemistry, 280(46), 38146–38152. https://doi.org/10.1074/jbc.M507384200
  • Mainardi, J.-L., Hugonnet, J.-E., Rusconi, F., Fourgeaud, M., Dubost, L., Moumi, A. N., Delfosse, V., Mayer, C., Gutmann, L., Rice, L. B., & Arthur, M. (2007). Unexpected inhibition of peptidoglycan l, d-transpeptidase from Enterococcus faecium by the β-lactam imipenem. Journal of Biological Chemistry, 282(42), 30414–30422. https://doi.org/10.1074/jbc.M704286200
  • Mainardi, J.-L., Morel, V., Fourgeaud, M., Cremniter, J., Blanot, D., Legrand, R., Fréhel, C., Arthur, M., van Heijenoort, J., & Gutmann, L. (2002). Balance between two transpeptidation mechanisms determines the expression of beta-lactam resistance in Enterococcus faecium. The Journal of Biological Chemistry, 277(39), 35801–35807. https://doi.org/10.1074/jbc.M204319200
  • Meyer, E. (1992). Internal water molecules and H-bonding in biological macromolecules: A review of structural features with functional implications. Protein Science, 1(12), 1543–1562. https://doi.org/10.1002/pro.5560011203
  • Moraes, G. L., Gomes, G. C., De Sousa, P. R. M., Alves, C. N., Govender, T., Kruger, H. G., Maguire, G. E., Lamichhane, G., & Lameira, J. (2015). Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development. Tuberculosis, 95(2), 95–111. https://doi.org/10.1016/j.tube.2015.01.006
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using autodock for ligand‐receptor docking. Current Protocols in Bioinformatics, 24(1), 8.14.1–8.14.40. https://doi.org/10.1002/0471250953.bi0814s24
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nicola, G., Tomberg, J., Pratt, R., Nicholas, R. A., & Davies, C. (2010). Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: Toward an understanding of antibiotic specificity. Biochemistry, 49(37), 8094–8104. https://doi.org/10.1021/bi100879m
  • Page, M. I. (2004). Beta-sultams-mechanism of reactions and use as inhibitors of serine proteases. Accounts of Chemical Research, 37(5), 297–303. https://doi.org/10.1021/ar0200899
  • Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: Past, present, and future. Antimicrobial Agents and Chemotherapy, 55(11), 4943–4960. https://doi.org/10.1128/AAC.00296-11
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Prigozhin, D. M., Krieger, I. V., Huizar, J. P., Mavrici, D., Waldo, G. S., Hung, L.-W., Sacchettini, J. C., Terwilliger, T. C., & Alber, T. (2014). Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis. PLoS One, 9(12), e116249. https://doi.org/10.1371/journal.pone.0116249
  • Ranaghan, K. E., & Mulholland, A. J. (2010). Investigations of enzyme-catalysed reactions with combined quantum mechanics/molecular mechanics (QM/MM) methods. International Reviews in Physical Chemistry, 29(1), 65–133. https://doi.org/10.1080/01442350903495417
  • Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88(6), 899–926. https://doi.org/10.1021/cr00088a005
  • Ribeiro, A. J., Yang, L., Ramos, M. J., Fernandes, P. A., Liang, Z.-X., & Hirao, H. (2015). Insight into enzymatic nitrile reduction: QM/MM study of the catalytic mechanism of QueF nitrile reductase. ACS Catalysis, 5(6), 3740–3751. https://doi.org/10.1021/acscatal.5b00528
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A., & Charlier, P. (2008). The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiology Reviews, 32(2), 234–258. https://doi.org/10.1111/j.1574-6976.2008.00105.x
  • Schleifer, K. H., & Kandler, O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews, 36(4), 407–477. https://doi.org/10.1128/MMBR.36.4.407-477.1972
  • Shi, Q., Meroueh, S. O., Fisher, J. F., & Mobashery, S. (2008). Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations. Journal of the American Chemical Society, 130(29), 9293–9303. https://doi.org/10.1021/ja801727k
  • Shi, R., Li, W., Liu, G., & Tang, Y. (2013). Catalytic mechanism of cytochrome P450 2D6 for 4‐hydroxylation of aripiprazole: A QM/MM study. Chinese Journal of Chemistry, 31(9), 1219–1227. https://doi.org/10.1002/cjoc.201300427
  • Silva, J. R. r A., Roitberg, A. E., & Alves, C. u N. (2014). Catalytic mechanism of L,D-transpeptidase 2 from Mycobacterium tuberculosis described by a computational approach: Insights for the design of new antibiotics drugs. Journal of Chemical Information and Modeling, 54(9), 2402–2410. https://doi.org/10.1021/ci5003069
  • Sousa, S. F., Ribeiro, A. J., Neves, R. P., Brás, N. F., Cerqueira, N. M., Fernandes, P. A., & Ramos, M. J. (2017). Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7(2), e1281.
  • Spratt, B. G., & Cromie, K. D. (1988). Penicillin-binding proteins of gram-negative bacteria. Reviews of Infectious Diseases, 10(4), 699–711. https://doi.org/10.1093/clinids/10.4.699
  • Triboulet, S., Arthur, M., Mainardi, J.-L., Veckerlé, C., Dubée, V., NGuekam-Moumi, A., Gutmann, L., Rice, L. B., & Hugonnet, J.-E. (2011). Inactivation kinetics of a new target of beta-lactam antibiotics. The Journal of Biological Chemistry, 286(26), 22777–22784. https://doi.org/10.1074/jbc.M111.239988
  • van der Kamp, M. W., & Mulholland, A. J. (2013). Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry, 52(16), 2708–2728. https://doi.org/10.1021/bi400215w
  • Vollmer, W., Blanot, D., & De Pedro, M. A. (2008). Peptidoglycan structure and architecture. FEMS Microbiology Reviews, 32(2), 149–167. https://doi.org/10.1111/j.1574-6976.2007.00094.x
  • Vollmer, W., Joris, B., Charlier, P., & Foster, S. (2008). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiology Reviews, 32(2), 259–286. https://doi.org/10.1111/j.1574-6976.2007.00099.x
  • Vreven, T., Byun, K. S., Komáromi, I., Dapprich, S., Montgomery, J. A., Jr., Morokuma, K., & Frisch, M. J. (2006). Combining quantum mechanics methods with molecular mechanics methods in ONIOM. Journal of Chemical Theory and Computation, 2(3), 815–826. https://doi.org/10.1021/ct050289g
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Waxman, D. J., & Strominger, J. L. (1983). Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annual Review of Biochemistry, 52(1), 825–869. https://doi.org/10.1146/annurev.bi.52.070183.004141
  • WHO. (2019). Global tuberculosis report. https://www.who.int/tb/publications/global_report/en/
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215–241. https://doi.org/10.1007/s00214-007-0310-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.