362
Views
22
CrossRef citations to date
0
Altmetric
Research Articles

Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays

, , ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 7574-7583 | Received 17 Nov 2020, Accepted 28 Feb 2021, Published online: 19 Mar 2021

References

  • Alves, R. J. V., Sadala-Castilho, R., De Lima, H. A., Guimarães, A. R., Wetzel, M. L. R., & Da Silva, N. G. (2017). A new species of the genus Vellozia (Velloziaceae) from minas gerais, Brazil, with comments on endemism, distribution and conservation. Phytotaxa, 328(2), 140–148. https://doi.org/10.11646/phytotaxa.328.2.4
  • Anatoliotakis, N., Deftereos, S., Bouras, G., Giannopoulos, G., Tsounis, D., Angelidis, C., Kaoukis, A., & Stefanadis, C. (2013). Myeloperoxidase: Expressing inflammation and oxidative stress in cardiovascular disease. Current Topics in Medicinal Chemistry, 13(2), 115–138. https://doi.org/10.2174/1568026611313020004
  • Ayensu, E. S. (1973). Biological and morphological aspects of the velloziaceae. Biotropica, 5(3), 135. https://doi.org/10.2307/2989806
  • Boufadi, Y. M., Soubhye, J., Riazi, A., Rousseau, A., Vanhaeverbeek, M., Nève, J., Boudjeltia, K. Z., & Van Antwerpen, P. (2014). Characterization and antioxidant properties of six Algerian propolis extracts: Ethyl acetate extracts inhibit Myeloperoxidase activity. International Journal of Molecular Sciences, 15(2), 2327–2345. https://doi.org/10.3390/ijms15022327
  • Branco, A., Pereira, A. D. S., Cardoso, J. N., De Neto, F. R. A., Pinto, A. C., & Braz-Filho, R. (2001). Further lipophilic flavonols in Vellozia graminifolia (Velloziaceae) by high temperature gas chromatography: Quick detection of new compounds. Phytochemical Analysis : PCA, 12(4), 266–270. https://doi.org/10.1002/pca.590
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Cherrak, S. A., Mokhtari-Soulimane, N., Berroukeche, F., Bensenane, B., Cherbonnel, A., Merzouk, H., & Elhabiri, M. (2016). In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PLoS One, 11(10), e0165575. https://doi.org/10.1371/journal.pone.0165575
  • Cornell, W. D., Cieplak, P., Bayly, C. I., & Kollman, P. A. (1993). Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. Journal of the American Chemical Society, 115(21), 9620–9631. https://doi.org/10.1021/ja00074a030
  • Costa, E. B., Silva, R. C., Espejo-Román, J. M., Neto, M. F., de, A., Cruz, J. N., Leite, F. H. A., Silva, C. H. T. P., Pinheiro, J. C., Macêdo, W. J. C., & Santos, C. B. R. (2020). Chemometric methods in antimalarial drug design from 1,2,4,5-tetraoxanes analogues. SAR and QSAR in Environmental Research, 31(9), 677–619. https://doi.org/10.1080/1062936X.2020.1803961
  • Da Silva, C. G., Carvalho, C. D. F., Hamerski, L., Castro, F. A. V., Alves, R. J. V., Kaiser, C. R., Eleutherio, E. C. A., & De Rezende, C. M. (2012). Protective effects of flavonoids and extract from Vellozia kolbekii Alves against oxidative stress induced by hydrogen peroxide in yeast. Journal of Natural Medicines, 66(2), 367–372. https://doi.org/10.1007/s11418-011-0585-z
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • De Souza, C. D., & Felfili, J. M. (2006). The utilization of medicinal plants in the region of Alto Paraíso of Goiás, GO, Brazil. Acta Botanica Brasilica, 20(1), 135–142. https://doi.org/10.1590/S0102-33062006000100013
  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32(suppl_2), W665–W667. https://doi.org/10.1093/nar/gkh381
  • dos Santos, K. L. B., Cruz, J. N., Silva, L. B., Ramos, R. S., Neto, M. F. A., Lobato, C. C., Ota, S. S. B., Leite, F. H. A., Borges, R. S., da Silva, C. H. T. P., Campos, J. M., & Santos, C. B. R. (2020). Identification of novel chemical entities for adenosine receptor type 2a using molecular modeling approaches. Molecules, 25(5), 1245. https://doi.org/10.3390/molecules25051245
  • Edenharder, R., & Grünhage, D. (2003). Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Mutation Research, 540(1), 1–18. https://doi.org/10.1016/S1383-5718(03)00114-1
  • Forbes, L. V., Sjögren, T., Auchère, F., Jenkins, D. W., Thong, B., Laughton, D., Hemsley, P., Pairaudeau, G., Turner, R., Eriksson, H., Unitt, J. F., & Kettle, A. J. (2013). Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. The Journal of Biological Chemistry, 288(51), 36636–36647. https://doi.org/10.1074/jbc.M113.507756
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2016). Gaussian 16 Revision 16.A.03 Inc.
  • Gusman, G. S., Campana, P. R. V., Castro, L. C., Castilho, R. O., Teixeira, M. M., & Braga, F. C. (2015). Evaluation of the effects of some Brazilian medicinal plants on the production of TNF- α and CCL2 by THP-1 Cells . Evidence-Based Complementary and Alternative Medicine : eCAM, 2015, 497123 https://doi.org/10.1155/2015/497123
  • Hampton, M. B., Kettle, A. J., & Winterbourn, C. C. (1998). Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood, 92(9), 3007–3017. https://doi.org/10.1182/blood.V92.9.3007
  • Harborne, J. B., Williams, C. A., Greenham, J., & Eagles, J. (1994). Variations in the lipophilic and vacuolar flavonoids of the genus Vellozia. Phytochemistry, 35(6), 1475–1480. https://doi.org/10.1016/S0031-9422(00)86879-X
  • Iwashina, T., Smirnov, S. V., Damdinsuren, O., & Kondo, K. (2002). Flavonoids from Reaumuria soongarica (Tamaricaceae) in Mongolia. Bulletin of the National Museum of Nature and Science, Series B (Botany), 38(4), 189–195.
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098. https://doi.org/10.1063/1.1332996
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kato, Y., Nagao, A., Terao, J., & Osawa, T. (2003). Inhibition of myeloperoxidase-catalyzed tyrosylation by phenolic antioxidants in vitro. Bioscience, Biotechnology, and Biochemistry, 67(5), 1136–1139. https://doi.org/10.1271/bbb.67.1136
  • Kettle, A. J., & Winterbourn, C. C. (1994). [53] Assays for the chlorination activity of myeloperoxidase. Methods in Enzymology, 233, 502-512. https://doi.org/10.1016/s0076-6879(94)33056-5
  • Kisic, B., Miric, D., Dragojevic, I., Rasic, J., & Popovic, L., Eds. (2016). Role of myeloperoxidase in patients with chronic kidney disease. In Oxidative Medicine and Cellular Longevity (Vol. 2016). Hindawi Limited. https://doi.org/10.1155/2016/1069743
  • Klebanoff, S. J. (2005). Myeloperoxidase: Friend and foe. Journal of Leukocyte Biology, 77(5), 598–625. https://doi.org/10.1189/jlb.1204697
  • Koirala, N., Thuan, N. H., Ghimire, G. P., Thang, D. Van, & Sohng, J. K., Eds. (2016). Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. In Enzyme and Microbial Technology (Vol. 86, pp. 103–116). Elsevier Inc. https://doi.org/10.1016/j.enzmictec.2016.02.003
  • Kostyuk, V. A., Kraemer, T., Sies, H., & Schewe, T. (2003). Myeloperoxidase/nitrite-mediated lipid peroxidation of low-density lipoprotein as modulated by flavonoids. FEBS Letters, 537(1–3), 146–150. https://doi.org/10.1016/S0014-5793(03)00113-3
  • Leão, R. P., Cruz, J. V., da Costa, G. V., Cruz, J. N., Ferreira, E. F. B., Silva, R. C., de Lima, L. R., Borges, R. S., Dos Santos, G. B., & Santos, C. B. R. (2020). Identification of new rofecoxib-based cyclooxygenase-2 inhibitors: A bioinformatics approach. Pharmaceuticals, 13(9), 209–226. https://doi.org/10.3390/ph13090209
  • Lefkowitz, D. L., & Lefkowitz, S. S. (2008). Microglia and myeloperoxidase: A deadly partnership in neurodegenerative disease. Free Radical Biology & Medicine, 45(5), 726–731. https://doi.org/10.1016/j.freeradbiomed.2008.05.021
  • Li, Y., Chi, G., Shen, B., Tian, Y., & Feng, H. (2016). Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling. Inflammation, 39(4), 1291–1301. https://doi.org/10.1007/s10753-016-0361-z
  • Lu, N., Sui, Y., Tian, R., & Peng, Y. Y. (2018). Inhibitive effects of quercetin on myeloperoxidase-dependent hypochlorous acid formation and vascular endothelial injury. Journal of Agricultural and Food Chemistry, 66(19), 4933–4940. https://doi.org/10.1021/acs.jafc.8b01537
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Marinovic, M. P., Morandi, A. C., & Otton, R. (2015). Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFκB p65 signal pathway. Toxicology In Vitro, 29(7), 1766–1778. https://doi.org/10.1016/j.tiv.2015.07.014
  • Mascarenhas, A. M. S., de Almeida, R. B. M., de Araujo Neto, M. F., Mendes, G. O., da Cruz, J. N., dos Santos, C. B. R., Botura, M. B., & Leite, F. H. A. (2020). Pharmacophore-based virtual screening and molecular docking to identify promising dual inhibitors of human acetylcholinesterase and butyrylcholinesterase. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1796791
  • Meotti, F. C., Senthilmohan, R., Harwood, D. T., Missau, F. C., Pizzolatti, M. G., & Kettle, A. J. (2008). Myricitrin as a substrate and inhibitor of myeloperoxidase: Implications for the pharmacological effects of flavonoids. Free Radical Biology & Medicine, 44(1), 109–120. https://doi.org/10.1016/j.freeradbiomed.2007.09.017
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Neto, R. D. A. M., Santos, C. B. R., Henriques, S. V. C., Machado, L. D. O., Cruz, J. N., da Silva, C. H. T. D. P., Federico, L. B., Oliveira, E. H. C. D., de Souza, M. P. C., da Silva, P. N. B., Taft, C. A., Ferreira, I. M., & Gomes, M. R. F. (2020). Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1839562
  • Neves Cruz, J., Santana de Oliveira, M., Gomes Silva, S., Pedro da Silva Souza Filho, A., Santiago Pereira, D., Lima e Lima, A. H., & de Aguiar Andrade, E. H. (2020). Insight into the Interaction Mechanism of Nicotine, NNK, and NNN with Cytochrome P450 2A13 Based on Molecular Dynamics Simulation. Journal of Chemical Information and Modeling, 60(2), 766–776. https://doi.org/10.1021/acs.jcim.9b00741
  • Pincemail, J., Deby, C., Thirion, A., de Bruyn-Dister, M., & Goutier, R. (1988). Human myeloperoxidase activity is inhibited in vitro by quercetin. Comparison with three related compounds. Experientia, 44(5), 450–453. https://doi.org/10.1007/BF01940544
  • Pinto, V., de, S., Araújo, J. S. C., Silva, R. C., da Costa, G. V., Cruz, J. N., Neto, M. F. D. A., Campos, J. M., Santos, C. B. R., Leite, F. H. A., & Junior, M. C. S. (2019). In silico study to identify new antituberculosis molecules from natural sources by hierarchical virtual screening and molecular dynamics simulations. Pharmaceuticals, 12(1), 36. https://doi.org/10.3390/ph12010036
  • Queiroz, R. F., Vaz, S. M., & Augusto, O. (2011). Inhibition of the chlorinating activity of myeloperoxidase by tempol: Revisiting the kinetics and mechanisms. The Biochemical Journal, 439(3), 423–431. https://doi.org/10.1042/BJ20110555
  • Quintão, F. J. O., Tavares, R. S. N., Vieira-Filho, S. A., Souza, G. H. B., & Santos, O. D. H. (2013). Hydroalcoholic extracts of Vellozia squamata: Study of its nanoemulsions for pharmaceutical or cosmetic applications. Revista Brasileira de Farmacognosia, 23(1), 101–107. https://doi.org/10.1590/S0102-695X2013005000001
  • Ramos, R. S., Macêdo, W. J. C., Costa, J. S., da Silva, C. H. T. D. P., Rosa, J. M. C., da Cruz, J. N., de Oliveira, M. S., de Aguiar Andrade, E. H., e Silva, R. B. L., Souto, R. N. P., & Santos, C. B. R. (2020). Potential inhibitors of the enzyme acetylcholinesterase and juvenile hormone with insecticidal activity: Study of the binding mode via docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 38(16), 4687–4709. https://doi.org/10.1080/07391102.2019.1688192
  • Rose, P. W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., Costanzo, L. D., Duarte, J. M., Dutta, S., Feng, Z., Green, R. K., Goodsell, D. S., Hudson, B., Kalro, T., Lowe, R., Peisach, E., Randle, C., Rose, A. S., Shao, C., … Burley, S. K. (2017). The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 45(D1), D271–D281.https://doi.org/10.1093/nar/gkw1000
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Santos, C. B. R., Santos, K. L. B., Cruz, J. N., Leite, F. H. A., Borges, R. S., Taft, C. A., Campos, J. M., & Silva, C. H. T. P. (2020). Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs. Journal of Biomolecular Structure and Dynamics. 1-13. https://doi.org/10.1080/07391102.2020.1761878
  • Sakipov, S., Rafikova, O., Kurnikova, M. G., Rafikov, R. (2017). Molecular mechanisms of bio-catalysis of heme extraction from hemoglobin. Redox Biology, 11, 516–523. https://doi.org/10.1016/j.redox.2017.01.004
  • Singh, W., Karabencheva-Christova, T. G., Black, G. W., Ainsley, J., Dover, L., & Christov, C. Z. (2016). Conformational dynamics, ligand binding and effects of mutations in NirE an S-adenosyl-L-methionine dependent methyltransferase. Scientific Reports, 6(1), 20107–20109. https://doi.org/10.1038/srep20107
  • Stierand, K., & Rarey, M. (2010). Drawing the PDB: Protein-ligand complexes in two dimensions. ACS Medicinal Chemistry Letters, 1(9), 540–545. https://doi.org/10.1021/ml100164p
  • Treml, J., & Šmejkal, K. (2016). Flavonoids as potent scavengers of hydroxyl radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4), 720–738. https://doi.org/10.1111/1541-4337.12204
  • Vale, V. V., Cruz, J. N., Viana, G. M. R., Póvoa, M. M., Brasil, D., do, S. B., & Dolabela, M. F. (2020). Naphthoquinones isolated from Eleutherine plicata herb: In vitro antimalarial activity and molecular modeling to investigate their binding modes. Medicinal Chemistry Research, 29(3), 487–494. https://doi.org/10.1007/s00044-019-02498-z
  • Van Der Veen, B. S., De Winther, M. P. J., & Heeringa, P. (2009). Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxidants and Redox Signaling, 11(11), 2899–2937. https://doi.org/10.1089/ars.2009.2538
  • Walle, T. (2007). Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Seminars in Cancer Biology, 17, 354–362. https://doi.org/10.1016/j.semcancer.2007.05.002
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Watt, J. M., & Breyer-Brandwijk, M. G. (1962). The medicinal and poisonous plants of southern africa: being an account of their medicinal uses, chemical composition, Pharmacological Effects and Toxicology in Man and Animal (2nd ed). Livingstone.
  • Williams, C. A., & Grayer, R. J. (2004). Anthocyanins and other flavonoids. Natural Product Reports, 21(4), 539–573. https://doi.org/10.1039/b311404j
  • Williams, C. A., Harborne, J. B., Greenham, J., & Eagles, J. (1994). Differences in flavonoid patterns between genera within the velloziaceae. Phytochemistry, 36(4), 931–940. https://doi.org/10.1016/S0031-9422(00)90466-7
  • Yang, X., Wang, T., Guo, J., Sun, M., Wong, M. W., & Huang, D. (2019). Dietary flavonoids scavenge hypochlorous acid via chlorination on A- and C-rings as primary reaction sites: Structure and reactivity relationship. Journal of Agricultural and Food Chemistry, 67(15), 4346–4354. https://doi.org/10.1021/acs.jafc.8b06689
  • Yeoh, B. S., Aguilera Olvera, R., Singh, V., Xiao, X., Kennett, M. J., Joe, B., Lambert, J. D., & Vijay-Kumar, M. (2016). Epigallocatechin-3-gallate inhibition of myeloperoxidase and its counter-regulation by dietary iron and lipocalin 2 in murine model of gut inflammation. The American Journal of Pathology, 186(4), 912–926. https://doi.org/10.1016/j.ajpath.2015.12.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.