619
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of the effects of chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation studies

, , &
Pages 7656-7665 | Received 11 Jul 2020, Accepted 01 Mar 2021, Published online: 22 Mar 2021

References

  • Baqui, A., Kelley, J. I., Jabra‐Rizk, M. A., DePaola, L. G., Falkler, W. A., & Meiller, T. F. (2001). In vitro effect of oral antiseptics on human immunodeficiency virus-1 and herpes simplex virus type 1. Journal of Clinical Periodontology, 28(7), 610–616. https://doi.org/10.1034/j.1600-051x.2001.028007610.x
  • Bayel Secinti, B., Tatar, G., & Taskin Tok, T. (2019). Determination of potential selective inhibitors for ROCKI and ROCKII isoforms with molecular modeling techniques: Structure based docking, ADMET and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 37(9), 2457–2463. https://doi.org/10.1080/07391102.2018.1491420
  • Bernstein, D., Schiff, G., Echler, G., Prince, A., Feller, M., & Briner, W. (1990). In vitro virucidal effectiveness of a 0.12%-chlorhexidine gluconate mouthrinse. Journal of Dental Research, 69(3), 874–876. https://doi.org/10.1177/00220345900690030901
  • Carrouel, F., Conte, M. P., Fisher, J., Gonçalves, L. S., Dussart, C., Llodra, J. C., & Bourgeois, D. (2020). COVID-19: A recommendation to examine the effect of mouthrinses with β-cyclodextrin combined with citrox in preventing infection and progression. Multidisciplinary Digital Publishing Institute.
  • Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment, Release 2020. San Diego: Dassault Systèmes; 2019
  • Dayem, A. A., Choi, H. Y., Kim, Y. B., & Cho, S.-G. (2015). Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One, 10(3), e0121610. https://doi.org/10.1371/journal.pone.0121610
  • Dexter, F., Parra, M. C., Brown, J. R., & Loftus, R. W. (2020). Perioperative COVID-19 defense: An evidence-based approach for optimization of infection control and operating room management. Anesthesia and Analgesia. https://dx.doi.org/10.1213/ANE.0000000000004829
  • Frabasile, S., Koishi, A. C., Kuczera, D., Silveira, G. F., Verri, W. A., Jr, Dos Santos, C. N. D., & Bordignon, J. (2017). The citrus flavanone naringenin impairs dengue virus replication in human cells. Scientific Reports, 7, 41864. https://doi.org/10.1038/srep41864
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson–Boltzmann surface area method. Molecular Informatics, 31(2), 114–122.
  • Jiang, F., Deng, L., Zhang, L., Cai, Y., Cheung, C. W., & Xia, Z. (2020). Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). Journal of General Internal Medicine, 35(5), 1545–1545. https://doi.org/10.1007/s11606-020-05762-w
  • Jo, S., Kim, H., Kim, S., Shin, D. H., & Kim, M. S. (2019). Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors . Chemical Biology & Drug Design, 94(6), 2023–2030. https://doi.org/10.1111/cbdd.13604
  • Jo, S., Kim, S., Shin, D. H., & Kim, M.-S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
  • Jucá, M. M., Cysne Filho, F. M. S., de Almeida, J. C., Mesquita, D. D. S., Barriga, J. R. d M., Dias, K. C. F., Barbosa, T. M., Vasconcelos, L. C., Leal, L. K. A. M., Ribeiro, J. E., & Vasconcelos, S. M. M. (2020). Flavonoids: Biological activities and therapeutic potential. Natural Product Research, 34(5), 692–705. https://doi.org/10.1080/14786419.2018.1493588
  • Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L. E., Brookes, D. H., Wilson, L., Chen, J., Liles, K., Chun, M., Li, P., Gohara, D. W., Dolinsky, T., Konecny, R., Koes, D. R., Nielsen, J. E., Head-Gordon, T., Geng, W., … Baker, N. A. (2018). Improvements to the APBS biomolecular solvation software suite. Protein Science : A Publication of the Protein Society, 27(1), 112–128. https://doi.org/10.1002/pro.3280
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 1–10. https://dx.doi.org/10.1080/07391102.2020.1751298
  • Kiat, T. S., Pippen, R., Yusof, R., Ibrahim, H., Khalid, N., & Abd Rahman, N. (2006). Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorganic & Medicinal Chemistry Letters, 16(12), 3337–3340. https://doi.org/10.1016/j.bmcl.2005.12.075
  • Kordbacheh, H., Eftekhar, F., & Ebrahimi, S. (2017). Anti-quorum sensing activity of Pistacia atlantica against Pseudomonas aeruginosa PAO1 and identification of its bioactive compounds. Microbial Pathogenesis, 110, 390–398. https://doi.org/10.1016/j.micpath.2017.07.018
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lima, D. P., Diniz, D. G., Moimaz, S. A. S., Sumida, D. H., & Okamoto, A. C. (2010). Saliva: Reflection of the body. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 14(3), e184–e188. https://doi.org/10.1016/j.ijid.2009.04.022
  • Liu, H., Mou, Y., Zhao, J., Wang, J., Zhou, L., Wang, M., Wang, D., Han, J., Yu, Z., & Yang, F. (2010). Flavonoids from Halostachys caspica and their antimicrobial and antioxidant activities. Molecules (Basel, Switzerland), 15(11), 7933–7945. https://doi.org/10.3390/molecules15117933
  • Liu, S., Zheng, Q., & Wang, Z. (2020). Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics (Oxford, England), 36(11), 3295–3298. https://doi.org/10.1093/bioinformatics/btaa224
  • Ma, D.-L., Chan, D. S.-H., & Leung, C.-H. (2013). Drug repositioning by structure-based virtual screening. Chemical Society Reviews, 42(5), 2130–2141. https://doi.org/10.1039/c2cs35357a
  • Malic, S., Emanuel, C., Lewis, M. A., & Williams, D. W. (2013). Antimicrobial activity of novel mouthrinses against planktonic cells and biofilms of pathogenic microorganisms. Microbiology Discovery, 1(1), 11.
  • Manipal, S., Hussain, S., Wadgave, U., Duraiswamy, P., & Ravi, K. (2016). The mouthwash war - chlorhexidine vs. herbal mouth rinses: A meta-analysis. Journal of Clinical and Diagnostic Research : JCDR, 10(5), ZC81–ZC83. https://doi.org/10.7860/JCDR/2016/16578.7815
  • Marui, V. C., Souto, M. L. S., Rovai, E. S., Romito, G. A., Chambrone, L., & Pannuti, C. M. (2019). Efficacy of preprocedural mouthrinses in the reduction of microorganisms in aerosol: A systematic review. Journal of the American Dental Association (1939), 150(12), 1015–1026. e1011. https://doi.org/10.1016/j.adaj.2019.06.024
  • Mateeva, N., Eyunni, S. V., Redda, K. K., Ononuju, U., Hansberry, T. D., II, Aikens, C., & Nag, A. (2017). Functional evaluation of synthetic flavonoids and chalcones for potential antiviral and anticancer properties. Bioorganic & Medicinal Chemistry Letters, 27(11), 2350–2356. https://doi.org/10.1016/j.bmcl.2017.04.034
  • Middleton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52(4), 673–751.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nair, M. P., Mahajan, S., Reynolds, J. L., Aalinkeel, R., Nair, H., Schwartz, S. A., & Kandaswami, C. (2006). The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta system. Clinical and Vaccine Immunology : CVI, 13(3), 319–328. https://doi.org/10.1128/CVI.13.3.319-328.2006
  • Nguyen, T. T. H., Woo, H.-J., Kang, H.-K., Nguyen, V. D., Kim, Y.-M., Kim, D.-W., Ahn, S.-A., Xia, Y., & Kim, D. (2012). Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters, 34(5), 831–838. https://doi.org/10.1007/s10529-011-0845-8
  • Owis, A. I., El-Hawary, M. S., El Amir, D., Aly, O. M., Abdelmohsen, U. R., & Kamel, M. S. (2020). Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 10(33), 19570–19575. https://doi.org/10.1039/D0RA03582C
  • Panche, A., Diwan, A., & Chandra, S. (2016). Flavonoids: An overview. Journal of Nutritional Science5, 1-15. https://doi.org/10.1017/jns.2016.41
  • Park, N.-H., Park, J. B., Min, B.-M., & Cherrick, H. M. (1991). Combined synergistic antiherpetic effect of acyclovir and chlorhexidine in vitro. Oral Surgery, Oral Medicine, and Oral Pathology, 71(2), 193–196. https://doi.org/10.1016/0030-4220(91)90467-Q
  • Pattanshetty, S., Narayana, A., & Radhakrishnan, R. (2020). Povidone‐iodine gargle as a prophylactic intervention to interrupt the transmission of SARS‐CoV‐2. Oral Diseases. https://doi.org/10.1111/odi.13378
  • Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-nCoV and controls in dental practice. International Journal of Oral Science, 12(1), 9–6. https://doi.org/10.1038/s41368-020-0075-9
  • Penmetsa, G. S., B, V., Bhupathi, A. P., Rani P, S., B V, S., & M V, R. (2019). Comparative Evaluation of Triphala, Aloe vera, and chlorhexidine mouthwash on gingivitis: A randomized controlled clinical trial. Contemporary Clinical Dentistry, 10(2), 333–337. https://doi.org/10.4103/ccd.ccd_583_18
  • Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews. Microbiology, 7(6), 439–450. https://doi.org/10.1038/nrmicro2147
  • Pourshahidi, S., Rezazadeh, F., Motamedifar, M., Davarmanesh, M., Ebrahimi, H., & Alipour, A. (2012). In vitro comparative study on antiherpetic effect of chlorhexidine and persica mouthwashes with acyclovir. Journal of Basic & Applied Sciences, 8, 286–290.
  • Prabakar, J., John, J., Arumugham, I. M., Kumar, R. P., & Sakthi, D. S. (2018). Comparing the effectiveness of probiotic, green tea, and chlorhexidine-and fluoride-containing dentifrices on oral microbial flora: A double-blind, randomized clinical trial. Contemporary Clinical Dentistry, 9(4), 560. https://doi.org/10.4103/ccd.ccd_659_18
  • Qiu, X., Kroeker, A., He, S., Kozak, R., Audet, J., Mbikay, M., & Chrétien, M. (2016). Prophylactic efficacy of quercetin 3-β-O-d-Glucoside against Ebola Virus Infection. Antimicrobial Agents and Chemotherapy, 60(9), 5182–5188. https://doi.org/10.1128/AAC.00307-16
  • Rozmer, Z., & Perjési, P. (2016). Naturally occurring chalcones and their biological activities. Phytochemistry Reviews, 15(1), 87–120. https://doi.org/10.1007/s11101-014-9387-8
  • Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J.-Y., Kim, D., Nguyen, T. T. H., Park, S.-J., Chang, J. S., Park, K. H., Rho, M.-C., & Lee, W. S. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940–7947. https://doi.org/10.1016/j.bmc.2010.09.035
  • Saliasi, I., Llodra, J. C., Bravo, M., Tramini, P., Dussart, C., Viennot, S., & Carrouel, F. (2018). Effect of a toothpaste/mouthwash containing carica papaya leaf extract on interdental gingival bleeding: A randomized controlled trial. International Journal of Environmental Research and Public Health, 15(12), 2660. https://doi.org/10.3390/ijerph15122660
  • Supranoto, S., Slot, D., Addy, M., & Van der Weijden, G. (2015). The effect of chlorhexidine dentifrice or gel versus chlorhexidine mouthwash on plaque, gingivitis, bleeding and tooth discoloration: A systematic review. International Journal of Dental Hygiene, 13(2), 83–92. https://doi.org/10.1111/idh.12078
  • Tapas, A. R., Sakarkar, D., & Kakde, R. (2008). Flavonoids as nutraceuticals: A review. Tropical Journal of Pharmaceutical Research, 7(3), 1089–1099. https://doi.org/10.4314/tjpr.v7i3.14693
  • Tatar, G., & Tok, T. (2016). Clarification of interaction mechanism of mouse hepatitis virus (MHV) N and nsp3 protein with homology modeling and protein-protein docking analysis. Current Computer Aided-Drug Design, 12(2), 98–106. https://doi.org/10.2174/1573409912666160226131253
  • Tatar, G., Ozyurt, E., & Turhan, K. (2020). Computational drug repurposing study of the RNA binding domain of SARS-CoV-2 nucleocapsid protein with antiviral agents. Biotechnology Progress, e3110. https://doi.org/10.1002/btpr.3110
  • Ul Qamar, M. T., Alqahtani, S. M., Alamri, M. A., & Chen, L.-L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313-319. https://doi.org/10.1016/j.jpha.2020.03.009
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788.
  • Xu, R., Cui, B., Duan, X., Zhang, P., Zhou, X., & Yuan, Q. (2020). Saliva: Potential diagnostic value and transmission of 2019-nCoV. International Journal of Oral Science, 12(1), 1–6. https://doi.org/10.1038/s41368-020-0080-z
  • Yang, L., Lin, J., Zhou, B., Liu, Y., & Zhu, B. (2017). Activity of compounds from Taxillus sutchuenensis as inhibitors of HCV NS3 serine protease. Natural Product Research, 31(4), 487–491. https://doi.org/10.1080/14786419.2016.1190719
  • Zakaria, M., & Mostafa, B. (2018). Comparing pomegranate extract and chlorhexidine mouthwashes in treatment of recurrent intraoral herpes. Journal of the Arab Society for Medical Research, 13(1), 53. https://doi.org/10.4103/jasmr.jasmr_5_18
  • Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: Promising natural compounds against viral infections. Archives of Virology, 162(9), 2539–2551. https://doi.org/10.1007/s00705-017-3417-y
  • Zhang, L., & Liu, Y. (2020). Potential interventions for novel coronavirus in China: A systematic review. Journal of Medical Virology, 92(5), 479–490. https://doi.org/10.1002/jmv.25707
  • Zhou, D., Dai, S.-M., & Tong, Q. (2020). COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. The Journal of Antimicrobial Chemotherapy, 75(7), 1667–1670.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733.
  • Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., Xia, J., Guo, Q., Song, T., He, J., Yen, H.-L., Peiris, M., & Wu, J. (2020). SARS-CoV-2 viral load in upper respiratory specimens of infected patients. The New England Journal of Medicine, 382(12), 1177–1179. https://doi.org/10.1056/NEJMc2001737
  • Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K.-Y. (2016). Coronaviruses - drug discovery and therapeutic options. Nature Reviews. Drug Discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.