227
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A computational study on active constituents of Habb-ul-aas and Tabasheer as inhibitors of SARS-CoV-2 main protease

, , , , , , ORCID Icon, , , ORCID Icon, , & show all
Pages 7702-7713 | Received 15 Feb 2021, Accepted 04 Mar 2021, Published online: 24 Mar 2021

References

  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science (New York, N.Y.), 300(5626), 1763–1767. https://doi.org/10.1126/science.1085658
  • Anwar, S., Mohammad, T., Shamsi, A., Queen, A., Parveen, S., Luqman, S., Hasan, G. M., Alamry, K. A., Azum, N., Asiri, A. M., & Hassan, M. I. (2020). Discovery of hordenine as a potential inhibitor of pyruvate dehydrogenase kinase 3: Implication in lung cancer therapy. Biomedicines, 8(5), 119. https://doi.org/10.3390/biomedicines8050119
  • Anwar, S., Shamsi, A., Shahbaaz, M., Queen, A., Khan, P., Hasan, G. M., Islam, A., Alajmi, M. F., Hussain, A., Ahmad, F., & Hassan, M. I. (2020). Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Scientific Reports, 10(1), 13. https://doi.org/10.1038/s41598-020-65648-z
  • Asrani, P., Hussain, A., Nasreen, K., AlAjmi, M. F., Amir, S., Sohal, S. S., & Hassan, M. I. (2021). Guidelines and safety considerations in the laboratory diagnosis of SARS-CoV-2 infection: A prerequisite study for health professionals. Risk Management and Healthcare Policy, 14, 379–389. https://doi.org/10.2147/RMHP.S284473
  • Asrani, P., Hasan, G. M., Sohal, S. S., & Hassan, M. I. (2020). Molecular basis of pathogenesis of coronaviruses: A comparative genomics approach to planetary health to prevent zoonotic outbreaks in the 21st century. Omics: a Journal of Integrative Biology, 24(11), 634–644. https://doi.org/10.1089/omi.2020.0131
  • Asrani, P., & Hassan, M. I. (2021). SARS-CoV-2 mediated lung inflammatory responses in host: Targeting the cytokine storm for therapeutic interventions. Molecular and Cellular Biochemistry, 476(2), 613–675. https://doi.org/10.1007/s11010-020-03935-z
  • Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2021). Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 128, 104117 https://doi.org/10.1016/j.compbiomed.2020.104117
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2020). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1766572
  • Biovia, D. S. (2015). Discovery studio modeling environment. Dassault Systèmes.
  • Brouqui, P., Giraud-Gatineau, A., & Raoult, D. (2020). Remdesivir investigational trials in COVID-19: A critical reappraisal. Elsevier.
  • Del Rio, C., & Malani, P. N. (2020). COVID-19—New insights on a rapidly changing epidemic. Jama, 323(14), 1339–1340. https://doi.org/10.1001/jama.2020.3072
  • Fatima, U., Rizvi, S. S. A., Raina, N., Fatima, S., Rahman, S., Kamal, M. A., & Hassan, M. (2020). Therapeutic management of COVID-19 patients: Clinical manifestation and limitations. Current Pharmaceutical Design, 26. https://doi.org/10.2174/1381612826666201125112719
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020a). Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. Journal of Biomolecular Structure and Dynamics, 1–16.
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020b). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – An in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 22, 1–13.
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020c). Potential therapeutic use of corticosteroids as SARS CoV-2 main protease inhibitors: A computational study. Journal of Biomolecular Structure and Dynamics, 23, 1–14.
  • He, F., Deng, Y., & Li, W. (2020). Coronavirus disease 2019: What we know? Journal of Medical Virology, 92(7), 719–725. https://doi.org/10.1002/jmv.25766
  • Hopkins, A. L., Groom, C. R., & Alex, A. (2004). Ligand efficiency: A useful metric for lead selection. Drug Discovery Today, 9(10), 430–431. https://doi.org/10.1016/S1359-6446(04)03069-7
  • Jabri, M.-A., Rtibi, K., Sakly, M., Marzouki, L., & Sebai, H. (2016). Role of gastrointestinal motility inhibition and antioxidant properties of myrtle berries (Myrtus communis L.) juice in diarrhea treatment. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 84, 1937–1944. https://doi.org/10.1016/j.biopha.2016.11.008
  • Jacob, R. B., Andersen, T., & McDougal, O. M. (2012). Accessible high-throughput virtual screening molecular docking software for students and educators. PLoS Computational Biology, 8(5), e1002499. https://doi.org/10.1371/journal.pcbi.1002499
  • Jairajpuri, D. S., Hussain, A., Nasreen, K., Mohammad, T., Anjum, F., Rehman, T., Hasan, G. M., Alajmi, M. F., & Hassan, I. (2021). Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Saudi Journal of Biological Sciences, https://doi.org/10.1016/j.sjbs.2021.01.040
  • Jurjani, I. (2010). Zakheera Khawarzam Shahi (Urdu translation by Khan HH; Vol. 3, pp. 190–220). Idara Kitabush Shifa.
  • Khan, A. H. New Delhi: Idarae Kitabus Shifa, YNM.
  • Khan, P., Queen, A., Mohammad, T., Smita, Khan, N. S., Hafeez, Z. B., Hassan, M. I., & Ali, S. (2019). Identification of α-Mangostin as a Potential Inhibitor of Microtubule Affinity Regulating Kinase 4. Journal of Natural Products, 82, 2252–2261. https://doi.org/10.1021/acs.jnatprod.9b00372
  • Khan, S., Fakhar, Z., Hussain, A., Ahmad, A., Jairajpuri, D. S., Alajmi, M. F., & Hassan, M. I. (2020). Structure-based identification of potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 19, 1–14.
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962.
  • Li, X., Zhang, L., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., You, T., Liu, X., & Yang, X. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293.
  • Mohammad, T., Shamsi, A., Anwar, S., Umair, M., Hussain, A., Rehman, M. T., AlAjmi, M. F., Islam, A., & Hassan, M. I. (2020). Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Research, 288, 198102. https://doi.org/10.1016/j.virusres.2020.198102
  • Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta (Bba) – Molecular Basis of Disease, 1866(10), 165878. https://doi.org/10.1016/j.bbadis.2020.165878
  • Nikhat, S., & Fazil, M. (2020). Overview of Covid-19; its prevention and management in the light of Unani medicine. Science of the Total Environment, 728, 138859. https://doi.org/10.1016/j.scitotenv.2020.138859
  • Oudit, G., Kassiri, Z., Jiang, C., Liu, P., Poutanen, S., Penninger, J., & Butany, J. (2009). SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. European Journal of Clinical Investigation, 39(7), 618–625. https://doi.org/10.1111/j.1365-2362.2009.02153.x
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676.
  • Padhi, A. K., Seal, A., Khan, J. M., Ahamed, M., & Tripathi, T. (2021). Unraveling the mechanism of arbidol binding and inhibition of SARS-CoV-2: Insights from atomistic simulations. European Journal of Pharmacology, 894, 173836. https://doi.org/10.1016/j.ejphar.2020.173836
  • Padhi, A. K., Shukla, R., Saudagar, P., & Tripathi, T. (2021). High-throughput rational design of the remdesivir binding site in the RdRp of SARS-CoV-2: Implications for potentialresistance. Iscience, 24(1), 101992. https://doi.org/10.1016/j.isci.2020.101992
  • Padhi, A. K., & Tripathi, T. (2020). Can SARS-CoV-2 accumulate mutations in the S-protein to increase pathogenicity? ACS Pharmacology & Translational Science, 3(5), 1023–1026. https://doi.org/10.1021/acsptsci.0c00113
  • Phan, T. (2020). Novel coronavirus: From discovery to clinical diagnostics. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 79, 104211. https://doi.org/10.1016/j.meegid.2020.104211
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., & Hess, B., (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854.
  • Samarqandi, N. (2010). Tarjuma Sharh-e-Asbab (pp. 397–405). CCRUM.
  • Shamsi, A., Mohammad, T., Anwar, S., Alajmi, M., Hussain, A., Rehman, M., Islam, A., & Hassan, M. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible therapeutic implication in COVID-19. Bioscience Reports, 40(6), BSR20201256. https://doi.org/10.1042/BSR20201256
  • Shamsi, A., Mohammad, T., Anwar, S., Amani, S., Khan, M. S., Husain, F. M., Rehman, M. T., Islam, A., & Hassan, M. I. (2021). Potential drug targets of SARS-CoV-2: From genomics to therapeutics. International Journal of Biological Macromolecules, 177, 1–9. https://doi.org/10.1016/j.ijbiomac.2021.02.071
  • Sharma, J., Bhardwaj, V. K., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933
  • Shieh, W.-J., Hsiao, C.-H., Paddock, C. D., Guarner, J., Goldsmith, C. S., Tatti, K., Packard, M., Mueller, L., Wu, M.-Z., Rollin, P., Su, I.-J., & Zaki, S. R. (2005). Immunohistochemical, in situ hybridization, and ultrastructural localization of SARS-associated coronavirus in lung of a fatal case of severe acute respiratory syndrome in Taiwan. Human Pathology, 36(3), 303–309. https://doi.org/10.1016/j.humpath.2004.11.006
  • Sina, I. (2010). Al qanoon fil tib (p. 1420). Idara Kitab ul Shifa.
  • Subbarayappa, B. (2001). The roots of ancient medicine: An historical outline. Journal of Biosciences, 26(2), 135–143. https://doi.org/10.1007/BF02703637
  • Tobaiqy, M., Qashqary, M., Al-Dahery, S., Mujallad, A., Hershan, A. A., Kamal, M. A., & Helmi, N. (2020). Therapeutic management of COVID-19 patients: A systematic review. Infection Prevention in Practice, 2(3), 100061. https://doi.org/10.1016/j.infpip.2020.100061
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Umrani, R. B. R. (2019). A comprehensive review of Habbul Aas (Myrtus communis L.). Research & Reviews: Journal of Herbal Science, 8, 7–15.
  • Varghese, G., John, R., Manesh, A., Karthik, R., & Abraham, O. (2020). Clinical management of COVID-19. The Indian Journal of Medical Research, 151(5), 401–410. https://doi.org/10.4103/ijmr.IJMR_957_20
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S., & Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. The Lancet. Respiratory Medicine, 8(5), 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5
  • Zehra, Z., Luthra, M., Siddiqui, S. M., Shamsi, A., Gaur, N., & Islam, A. (2020). Corona virus versus existence of human on the earth: A computational and biophysical approach. International Journal of Biological Macromolecules, 161, 271–281. https://doi.org/10.1016/j.ijbiomac.2020.06.007
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.