436
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Insilico screening of therapeutic potentials from Strychnos nux-vomica against the dimeric main protease (Mpro) structure of SARS-CoV-2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7796-7814 | Received 26 Oct 2020, Accepted 06 Mar 2021, Published online: 24 Mar 2021

References

  • Ahmad, S., Abbasi, H. W., & Shahid, S. (2020). Molecular docking, simulation and MM-PBSA studies of nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1775129
  • Ashraf, M. A. (2020). Phytochemicals as potential anticancer drugs: Time to Ponder Nature’s Bounty. Biomed Research International, 2020, 1-7. https://doi.org/10.1155/2020/8602879
  • Ben-Shabat, S., Yarmolinsky, L., Porat, D., & Dahan, A. (2020). Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery and Translational Research, 10(2), 354–367. https://doi.org/10.1007/s13346-019-00691-6
  • Bhattacharjee, T., Sen, S., & Chakraborty, R. (2019). Cultivation of medicinal plants: Special reference to important medicinal plants of India. In Herbal medicine in India: Indigenous knowledge, practice, innovation and its value (pp. 101–115). Springer.
  • Bibi, N., Gul, S., Ali, J., & Kamal, M. A. (2020). Viroinformatics approach to explore the inhibitory mechanism of existing drugs repurposed to fight against COVID-19. European Journal of Pharmacology, 885, 173496. https://doi.org/10.1016/j.ejphar.2020.173496
  • Chandra, B. M., Lalitendu, M. T., & Keshari, P. B. (2017). Silvics, phytochemistry and ethnopharmacy of endangered poison nut tree (Strychnos nux-vomica L.): A review. Journal of Pharmacognosy and Phytochemistry, 6, 1207–1216.
  • Chen, J., Wang, X., Qu, Y-G., Chen, Z-P., Cai, H., Liu, X., Xu, F., Lu, T-L., & Cai, B-C. (2012). Analgesic and anti-inflammatory activity and pharmacokinetics of alkaloids from seeds of Strychnos nux-vomica after transdermal administration: Effect of changes in alkaloid composition. Journal of Ethnopharmacology, 139(1), 181–188. https://doi.org/10.1016/j.jep.2011.10.038
  • Chintha, V., & Wudayagiri, R. (2019). Bioavailability and Neuroprotectivity of 3-(3, 4-dimethoxy phenyl)-1-4 (methoxy phenyl) prop-2-en-1-one against Schizophrenia: An in silico approach. Journal of Receptor and Signal Transduction Research, 39(56), 392–398. https://doi.org/10.1080/10799893.2019.1702689
  • Choudhary, M. I., Shaikh, M., Tul-Wahab, A., & Ur-Rahman, A. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS One, 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030
  • da Silva, T. U., Pougy K de, C., & Albuquerque, M. G. (2020). Development of parameters compatible with the CHARMM36 force field for [Fe4S4]2+ clusters and molecular dynamics simulations of adenosine-5’-phosphosulfate reductase in GROMACS 2019. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1847687
  • Dallakyan, S., & Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx. Arctic Methods in Molecular Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology (Clifton, N.J.), 1084, 193–226. https://doi.org/10.1007/978-1-62703-658-0_11
  • de Wilde, A. H., Jochmans, D., Posthuma, C. C., Zevenhoven-Dobbe, J. C., van Nieuwkoop, S., Bestebroer, T. M., van den Hoogen, B. G., Neyts, J., & Snijder, E. J. (2014). Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrobial Agents and Chemotherapy, 58(8), 4875–4884. https://doi.org/10.1128/AAC.03011-14
  • Denaro, M., Smeriglio, A., Barreca, D., De Francesco, C., Occhiuto, C., Milano, G., & Trombetta, D. (2020). Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research: PTR, 34(4), 742–768. https://doi.org/10.1002/ptr.6575
  • Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1
  • Ebhohimen, I. E., Edemhanria, L., & Awojide, S. (2020). Advances in computer-aided drug discovery. In Phytochemicals as Lead Compounds for New Drug Discovery (pp. 25–37). Elsevier.
  • Eldahshan, O. A., & Abdel-Daim, M. M. (2015). Phytochemical study, cytotoxic, analgesic, antipyretic and anti-inflammatory activities of Strychnos nux-vomica. Cytotechnology, 67(5), 831–844. https://doi.org/10.1007/s10616-014-9723-2
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1758791
  • Enkhtaivan, G., Maria John, K. M., Ayyanar, M., Sekar, T., Jin, K.-J., & Kim, D. H. (2015). Anti-influenza (H1N1) potential of leaf and stem bark extracts of selected medicinal plants of South India. Saudi Journal of Biological Sciences, 22(5), 532–538. https://doi.org/10.1016/j.sjbs.2015.01.011
  • Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland), 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
  • Fu, Y., Zhang, Y., He, H., Hou, L., Di, Y., Li, S., Luo, X., & Hao, X. (2012). Strynuxlines A and B, alkaloids with an unprecedented carbon skeleton from Strychnos nux-vomica. Journal of Natural Products, 75(11), 1987–1990. https://doi.org/10.1021/np300339r
  • Ghosh, A. K., Brindisi, M., Shahabi, D., Chapman, M. E., & Mesecar, A. D. (2020). Drug development and medicinal chemistry efforts toward SARS-coronavirus and Covid-19 therapeutics . ChemMedChem, 15(11), 907–932. https://doi.org/10.1002/cmdc.202000223
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1779818
  • Gil, C., Ginex, T., & Maestro, I. (2020). COVID-19: drug targets and potential treatments. Journal of Medicinal Chemistry, 63(21), 12359–12386. https://doi.org/10.1021/acs.jmedchem.0c00606
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(S1), S162–S173. https://doi.org/10.1002/elps.200900140
  • Guo, R., Wang, T., Zhou, G., Xu, M., Yu, X., Zhang, X., Sui, F., Li, C., Tang, L., & Wang, Z. (2018). Botany, Phytochemistry, Pharmacology and Toxicity of Strychnos nux-vomica L.: A Review. The American Journal of Chinese Medicine, 46(1), 1–23. https://doi.org/10.1142/S0192415X18500015
  • Gupta, S., Singh, A. K., & Kushwaha, P. P. (2020). Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Journal of Biomolecular Structure and Dynamics, 0, 1–12. https://doi.org/10.1080/07391102.2020.1776157
  • Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A., & Al-Anazi, K. M. (2020). Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sciences, 255, 117831. https://doi.org/10.1016/j.lfs.2020.117831
  • Ibrahim, M. A. A., Abdelrahman, A. H. M., & Hegazy, M. E. F. (2020). In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1791958
  • Ishola, A. A., & Adewole, K. E. (2020). In silico screening reveals histone deacetylase 7 and ERK1/2 as potential targets for artemisinin dimer and artemisinin dimer hemisuccinate. Current Drug Discovery Technologies, 17(5), 725–734. https://doi.org/10.2174/1570163816666190705164756
  • Islam, M. T., Sarkar, C., & El-Kersh, D. M. (2020). Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research, 34(10), 2471-2492. https://doi.org/10.1002/ptr.6700
  • Jahan, I., & Onay, A. (2020). Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turkish Journal of Biology = Turk Biyoloji Dergisi, 44(3), 228–241. https://doi.org/10.3906/biy-2005-114
  • Jiang, X., Tian, J.-X., Wang, M., Tian, Y., & Zhang, Z.-J. (2019). Analysis of dihydroindole-type alkaloids in Strychnos nux-vomica unprocessed and processed seeds by high-performance liquid chromatography coupled with diode array detection and mass spectrometry . Journal of Separation Science, 42(22), 3395–3402. https://doi.org/10.1002/jssc.201900660
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020a). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu, Y., Zhu, C., Hu, T., Du, X., Duan, Y., Yu, J., Yang, X., Yang, X., Yang, K., Liu, X., Guddat, L. W., Xiao, G., Zhang, L., Yang, H., & Rao, Z. (2020b). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology, 27(6), 529–532. https://doi.org/10.1038/s41594-020-0440-6
  • Kaliyaperumal, S., Periyasamy, K., & Balakrishnan, U. (2020). Antiviral phytocompounds for drug development. In Phytochemicals as Lead Compounds for New Drug Discovery (pp. 239–244). Elsevier.
  • Kar, P., Sharma, N. R., & Singh, B. (2020). Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1780947
  • Kumar, A., Choudhir, G., & Shukla, S. K. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1772112
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, Y., Zhou, W., Yang, L., & You, R. (2020). Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacological Research, 157, 104833. https://doi.org/10.1016/j.phrs.2020.104833
  • Liang, J., Karagiannis, C., Pitsillou, E., Darmawan, K. K., Ng, K., Hung, A., & Karagiannis, T. C. (2020). Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface. Computational Biology and Chemistry, 89, 107372. https://doi.org/10.1016/j.compbiolchem.2020.107372
  • Lin, L., Ting, S., Yufei, H., Wendong, L., Yubo, F., & Jing, Z. (2020). Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2. Virus Research, 288, 198082. https://doi.org/10.1016/j.virusres.2020.198082
  • Lin, L. T., Hsu, W. C., & Lin, C. C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24–35. https://doi.org/10.4103/2225-4110.124335
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 6(3), 315–331. https://doi.org/10.1021/acscentsci.0c00272
  • Mahmud, S., Uddin, M. A. R., & Zaman, M. (2020). Molecular docking and dynamics study of natural compound for potential inhibition of main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1796808
  • Maiti, P., Nand, M., & Joshi, T. (2020). Identification of luteolin -7-glucoside and epicatechin gallate from Vernonia cinerea, as novel EGFR L858R kinase inhibitors against lung cancer: Docking and simulation-based study. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1784791
  • Maria John, K. M., Enkhtaivan, G., Ayyanar, M., Jin, K., Yeon, J. B., & Kim, D. H. (2015). Screening of ethnic medicinal plants of South India against influenza (H1N1) and their antioxidant activity. Saudi Journal of Biological Sciences, 22(2), 191–197. https://doi.org/10.1016/j.sjbs.2014.09.009
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mukherjee, S., Dasgupta, S., & Adhikary, T. (2020). Structural insight to hydroxychloroquine-3C-like proteinase complexation from SARS-CoV-2: Inhibitor modelling study through molecular docking and MD-simulation study. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1804458
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Patel, D. K., Patel, K., Duraiswamy, B., & Dhanabal, S. P. (2012). Phytochemical analysis and standardization of Strychnos nux-vomica extract through HPTLC techniques. Asian Pacific Journal of Tropical Disease, 2, S56–S60. https://doi.org/10.1016/S2222-1808(12)60124-8
  • Patel, K., Laloo, D., & Singh, G. K. (2017). A review on medicinal uses, analytical techniques and pharmacological activities of Strychnos nux-vomica Linn.: A concise report. Chinese Journal of Integrative Medicine, 1–13. https://doi.org/10.1007/s11655-016-2514-1
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Prasanth, D., Murahari, M., & Chandramohan, V. (2020). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Journal of Biomolecular Structure and Dynamics, 0, 1–15. https://doi.org/10.1080/07391102.2020.1779129
  • Qureshi, A., Kaur, G., & Kumar, M. (2017). AVCpred: An integrated web server for prediction and design of antiviral compounds. Chemical Biology & Drug Design, 89(1), 74–83. https://doi.org/10.1111/cbdd.12834
  • Rahman, M. M., Saha, T., & Islam, K. J. (2020). Virtual screening, molecular dynamics and structure–activity relationship studies to identify potent approved drugs for Covid-19 treatment. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1794974
  • Rao, P., Shukla, A., Parmar, P., Rawal, R. M., Patel, B., Saraf, M., & Goswami, D. (2020). Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Biophysical Chemistry, 264, 106425. https://doi.org/10.1016/j.bpc.2020.106425
  • Ren, H., Zhao, J., Fan, D., Wang, Z., Zhao, T., Li, Y., Zhao, Y., Adelson, D., & Hao, H. (2019). Alkaloids from nux vomica suppresses colon cancer cell growth through Wnt/β-catenin signaling pathway . Phytotherapy Research: PTR, 33(5), 1570–1578. https://doi.org/10.1002/ptr.6347
  • Romeo, A., Iacovelli, F., & Falconi, M. (2020). Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: Virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Research, 286, 198068. https://doi.org/10.1016/j.virusres.2020.198068
  • Sah, A., Khatik, G. L., Vyas, M., & Yadav, P. (2016). A short review on anticancer investigations of Strychnos nux-vomica. International Journal of Green Pharmacy, 10, 87.
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology, 9, 923. https://doi.org/10.3389/fphar.2018.00923
  • Schüttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sharifkashani, S., Bafrani, M. A., Khaboushan, A. S., Pirzadeh, M., Kheirandish, A., Yavarpour Bali, H., Hessami, A., Saghazadeh, A., & Rezaei, N. (2020). Angiotensin-converting enzyme 2 (ACE2) receptor and SARS-CoV-2: Potential therapeutic targeting. European Journal of Pharmacology, 884, 173455. https://doi.org/10.1016/j.ejphar.2020.173455
  • Sharma, P., Joshi, T., Joshi, T., Chandra, S., & Tamta, S. (2020). In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes. Journal of Ethnopharmacology, 248, 112268. https://doi.org/10.1016/j.jep.2019.112268
  • Shukla, R., & Singh, T. R. (2020). Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer's disease. Journal of Biomolecular Structure & Dynamics, 38(1), 248–262. https://doi.org/10.1080/07391102.2019.1571947
  • Singh, B., Mal, G., & Gautam, S. K. (2019). Computer-aided drug discovery. In Advances in animal biotechnology (pp. 471–481). Springer International Publishing.
  • Sohrabi, C., Alsafi, Z., O'Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery (London, England), 76, 71–76. https://doi.org/10.1016/j.ijsu.2020.02.034
  • Vabret, N., Britton, G. J., Gruber, C., Hegde, S., Kim, J., Kuksin, M., Levantovsky, R., Malle, L., Moreira, A., Park, M. D., Pia, L., Risson, E., Saffern, M., Salomé, B., Esai Selvan, M., Spindler, M. P., Tan, J., van der Heide, V., Gregory, J. K., … Samstein, R. M, Sinai Immunology Review Project. (2020). Immunology of COVID-19: Current state of the science. Immunity, 52(6), 910–941. https://doi.org/10.1016/j.immuni.2020.05.002
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • WHO (2020a). Coronavirus disease (COVID-2019): Situation reports 72 − 101. In: World Heal. Organ. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200712-covid-19-sitrep-174.pdf?sfvrsn=5d1c1b2c_2
  • WHO (2020b). WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19–-11-march-2020. Accessed 18 Jul 2020
  • Xiu, S., Dick, A., & Ju, H. (2020). Inhibitors of SARS-CoV-2 entry: Current and future opportunities. Journal of Medicinal Chemistry. https://doi.org/10.1021/acs.jmedchem.0c00502
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhao, N., Li, L., Liu, J-H., Zhuang, P-Y., Yu, S-S., Ma, S-G., Qu, J., Chen, N-H., & Wu, L-J. (2012). New alkaloids from the seeds of Strychnos nux-vomica. Tetrahedron, 68(16), 3288–3294. https://doi.org/10.1016/j.tet.2012.03.006
  • Zheng, L., Wang, X., Luo, W., Zhan, Y., & Zhang, Y. (2013). Brucine, an effective natural compound derived from nux-vomica, induces G1 phase arrest and apoptosis in LoVo cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 58, 332–339. https://doi.org/10.1016/j.fct.2013.05.011
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14. https://doi.org/10.1038/s41421-020-0153-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.