2,383
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

COVID19-inhibitory activity of withanolides involves targeting of the host cell surface receptor ACE2: insights from computational and biochemical assays

, , , , , , & show all
Pages 7885-7898 | Received 25 Jan 2021, Accepted 09 Mar 2021, Published online: 02 Apr 2021

References

  • Ali, A., & Vijayan, R. (2020). Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Scientific Reports, 10(1), 14214. https://doi.org/10.1038/s41598-020-71188-3
  • Antony, B., Benny, M., Kuruvilla, B. T., Gupta, N. K., Sebastian, A., & Jacob, S. (2018). ACUTE AND SUB CHRONIC TOXICITY STUDIES OF PURIFIED WITHANIA SOMNIFERA EXTRACT IN RATS. International Journal of Pharmacy and Pharmaceutical Sciences, 10(12), 41–46. 10.22159/ijpps.2018v10i12.29493
  • Balkrishna, A., Pokhrel, S., Singh, J., & Varshney, A. (2020). Withanone from Withania somnifera may inhibit novel Coronavirus (COVID-19) entry by disrupting interactions between viral S-protein receptor binding domain and host ACE2 receptor. PREPRINT (Version 1) available at Research Square. https://www.researchsquare.com/article/rs-17806/v1
  • Bhargava, P., Malik, V., Liu, Y., Ryu, J., Kaul, S. C., Sundar, D., & Wadhwa, R. (2019). Molecular insights into withaferin-A-induced senescence: Bioinformatics and experimental evidence to the role of NFκB and CARF. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 74(2), 183–191. https://doi.org/10.1093/gerona/gly107
  • Cai, Z., Zhang, G., Tang, B., Liu, Y., Fu, X., & Zhang, X. (2015). Promising anti-influenza properties of active constituent of Withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: Computational study. Cell Biochemistry and Biophysics, 72(3), 727–739. https://doi.org/10.1007/s12013-015-0524-9
  • Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., Di Napoli, R. (2020). Features, evaluation and treatment coronavirus (COVID-19) (StatPearls). http://www.ncbi.nlm.nih.gov/pubmed/32150360
  • Chaudhary, A., Kalra, R. S., Huang, C., Prakash, J., Kaul, S. C., & Wadhwa, R. (2017). 2,3-Dihydro-3β-methoxy withaferin-a protects normal cells against stress: Molecular evidence of its potent cytoprotective activity. Journal of Natural Products, 80(10), 2756–2760. https://doi.org/10.1021/acs.jnatprod.7b00573
  • Chaudhary, A., Kalra, R. S., Malik, V., Katiyar, S. P., Sundar, D., Kaul, S. C., & Wadhwa, R. (2019). 2, 3-dihydro-3β-methoxy withaferin-A lacks anti-metastasis potency: Bioinformatics and experimental evidences. Scientific Reports, 9(1), 17344. https://doi.org/10.1038/s41598-019-53568-6
  • Chikhale, R. V., Gurav, S. S., Patil, R. B., Sinha, S. K., Prasad, S. K., Shakya, A., Shrivastava, S. K., Gurav, N. S., & Prasad, R. S. (2020). Sars-cov-2 host entry and replication inhibitors from Indian ginseng: An in-silico approach. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1778539
  • Choudhary, S., & Silakari, O. (2020). Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Virus Research, 289, 198146. https://doi.org/10.1016/j.virusres.2020.198146
  • Clausen, T. M., Sandoval, D. R., Spliid, C. B., Pihl, J., Perrett, H. R., Painter, C. D., Narayanan, A., Majowicz, S. A., Kwong, E. M., McVicar, R. N., Thacker, B. E., Glass, C. A., Yang, Z., Torres, J. L., Golden, G. J., Bartels, P. L., Porell, R. N., Garretson, A. F., Laubach, L., … Esko, J. D. (2020). SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell, 183(4), 1043–1057. https://doi.org/10.1016/j.cell.2020.09.033
  • Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R. E., & Acton, S. (2000). A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research, 87(5), E1–E9. https://doi.org/10.1161/01.res.87.5.e1
  • Drożdżal, S., Rosik, J., Lechowicz, K., Machaj, F., Kotfis, K., Ghavami, S., & Łos, M. J. (2020). FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 53, 100719. https://doi.org/10.1016/j.drup.2020.100719
  • Dubey, S., Yoon, H., Cohen, M. S., Nagarkatti, P., Nagarkatti, M., & Karan, D. (2018). Withaferin A associated differential regulation of inflammatory cytokines. Frontiers in Immunology, 9, 195. https://doi.org/10.3389/fimmu.2018.00195
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gao, R., Shah, N., Lee, J. S., Katiyar, S. P., Li, L., Oh, E., Sundar, D., Yun, C. O., Wadhwa, R., & Kaul, S. C. (2014). Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K. Molecular Cancer Therapeutics, 13(12), 2930–2940. https://doi.org/10.1158/1535-7163.MCT-14-0324
  • Grover, A., Agrawal, V., Shandilya, A., Bisaria, V. S., & Sundar, D. (2011). Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: Mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A. BMC Bioinformatics, 12 (Suppl 13), S22. https://doi.org/10.1186/1471-2105-12-S13-S22
  • Grover, A., Priyandoko, D., Gao, R., Shandilya, A., Widodo, N., Bisaria, V. S., Kaul, S. C., Wadhwa, R., & Sundar, D. (2012). Withanone binds to mortalin and abrogates mortalin-p53 complex: Computational and experimental evidence. The International Journal of Biochemistry & Cell Biology, 44(3), 496–504. https://doi.org/10.1016/j.biocel.2011.11.021
  • Grover, A., Singh, R., Shandilya, A., Priyandoko, D., Agrawal, V., Bisaria, V. S., Wadhwa, R., Kaul, S. C., & Sundar, D. (2012). Ashwagandha derived withanone targets TPX2-Aurora A complex: Computational and experimental evidence to its anticancer activity. PLoS One, 7(1), e30890. https://doi.org/10.1371/journal.pone.0030890
  • Hanson, Q. M., Wilson, K. M., Shen, M., Itkin, Z., Eastman, R. T., Shinn, P., & Hall, M. D. (2020). Targeting ACE2-RBD interaction as a platform for COVID19 therapeutics: Development and drug repurposing screen of an AlphaLISA proximity assay. bioRxiv. https://doi.org/10.1101/2020.06.16.154708. ACS Pharmacology & Translational Science, 3(6), 1352–1360. https://doi.org/10.1021/acsptsci.0c00161
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C., & Pohlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
  • Hulswit, R. J., de Haan, C. A., & Bosch, B. J. (2016). Coronavirus spike protein and tropism changes. Advances in Virus Research, 96, 29–57. https://doi.org/10.1016/bs.aivir.2016.08.004
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kadam, R. U., & Wilson, I. A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences of the United States of America, 114(2), 206–214. https://doi.org/10.1073/pnas.1617020114
  • Kalra, R. S., & Kandimalla, R. (2021). Engaging the spikes: Heparan sulfate facilitates SARS-CoV-2 spike protein binding to ACE2 and potentiates viral infection. Signal Transduction and Targeted Therapy, 6(1), 39. https://doi.org/10.1038/s41392-021-00470-1
  • Kalra, R. S., Tomar, D., Meena, A. S., & Kandimalla, R. (2020). SARS-CoV-2, ACE2, and hydroxychloroquine: Cardiovascular complications, therapeutics, and clinical readouts in the current settings. Pathogens, 9(7), 546. https://doi.org/10.3390/pathogens9070546
  • Kaul, S. C., Ishida, Y., Tamura, K., Wada, T., Iitsuka, T., Garg, S., Kim, M., Gao, R., Nakai, S., Okamoto, Y., Terao, K., & Wadhwa, R. (2016). Novel methods to generate active ingredients-enriched Ashwagandha leaves and extracts. PLoS One, 11(12), e0166945. https://doi.org/10.1371/journal.pone.0166945
  • Kaur, A., Singh, B., Ohri, P., Wang, J., Wadhwa, R., Kaul, S. C., Pati, P. K., & Kaur, A. (2018). Organic cultivation of Ashwagandha with improved biomass and high content of active withanolides: Use of Vermicompost. PLoS One, 13(4), e0194314. https://doi.org/10.1371/journal.pone.0194314
  • Kumar, S. (2020). Drug and vaccine design against Novel Coronavirus (2019-nCoV) spike protein through Computational approach. Preprints (2020020071). https://doi.org/10.20944/preprints202002.0071.v1
  • Kumar, V., Dhanjal, J. K., Bhargava, P., Kaul, A., Wang, J., Zhang, H., Kaul, S. C., Wadhwa, R., & Sundar, D. (2020). Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1775704
  • Kumar, V., Dhanjal, J. K., Kaul, S. C., Wadhwa, R., & Sundar, D. (2020). Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (M(pro)) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1772108
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), 562–569. https://doi.org/10.1038/s41564-020-0688-y
  • Li, F. (2008). Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. Journal of Virology, 82(14), 6984–6991. https://doi.org/10.1128/JVI.00442-08
  • Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (New York, N.Y.), 309(5742), 1864–1868. https://doi.org/10.1126/science.1116480
  • Li, M. Y., Li, L., Zhang, Y., & Wang, X. S. (2020). Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious Diseases of Poverty, 9(1), 45. https://doi.org/10.1186/s40249-020-00662-x
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet (London, England), 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8 https://doi.org/10.1016/S0140-6736(20)30251-8
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • McKee, D. L., Sternberg, A., Stange, U., Laufer, S., & Naujokat, C. (2020). Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacological Research, 157, 104859. https://doi.org/10.1016/j.phrs.2020.104859
  • Mishra, L. C., Singh, B. B., & Dagenais, S. (2000). Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): A review. Alternative Medicine Review: A Journal of Clinical Therapeutic, 5(4), 334–346.
  • Muhseen, Z. T., Hameed, A. R., Al-Hasani, H. M. H., Tahir Ul Qamar, M., & Li, G. (2020). Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. Journal of Molecular Liquids, 320, 114493. https://doi.org/10.1016/j.molliq.2020.114493
  • Nguyen, H. L., Lan, P. D., Thai, N. Q., Nissley, D. A., O'Brien, E. P., & Li, M. S. (2020). Does SARS-CoV-2 bind to human ACE2 more strongly than does SARS-CoV? The Journal of Physical Chemistry B, 124(34), 7336–7347. https://doi.org/10.1021/acs.jpcb.0c04511
  • Padhi, A. K., Seal, A., Khan, J. M., Ahamed, M., & Tripathi, T. (2021). Unraveling the mechanism of arbidol binding and inhibition of SARS-CoV-2: Insights from atomistic simulations. European Journal of Pharmacology, 894, 173836. https://doi.org/10.1016/j.ejphar.2020.173836
  • Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9(2), 91–102. https://doi.org/10.1007/s12551-016-0247-1
  • Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K., Chen, M. H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J. L., Chen, Q., Wang, D., Erdman, D. D., Peret, T. C., … Bellini, W. J. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science (New York, N.Y.), 300(5624), 1394–1399. https://doi.org/10.1126/science.1085952
  • Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2020). Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211
  • Schrödinger. (2020). Glide, ligprep, protein preparation wizard, prime, desmond molecular dynamics system. Maestro-Desmond Interoperability Tools Schrödinger, LLC.
  • Shi, T., Wilhelm, E., Bell, B., & Dumais, N. (2017). Nf-κb-dependent inhibition of HIV-1 transcription by withaferin A. HIV: Current Research, 02(01), 2572. https://doi.org/10.4172/2572-0805.1000119
  • Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2020). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - A molecular docking study. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1810778
  • Singh, N., Bhalla, M., de Jager, P., & Gilca, M. (2011). An overview on Ashwagandha: A Rasayana (rejuvenator) of Ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 8(5 Suppl), 208–213. https://doi.org/10.4314/ajtcam.v8i5S.9
  • Straughn, A. R., & Kakar, S. S. (2019). Withaferin A ameliorates ovarian cancer-induced cachexia and proinflammatory signaling. Journal of Ovarian Research, 12(1), 115. https://doi.org/10.1186/s13048-019-0586-1
  • Straughn, A. R., & Kakar, S. S. (2020). Withaferin A: A potential therapeutic agent against COVID-19 infection. Journal of Ovarian Research, 13(1), 79. https://doi.org/10.1186/s13048-020-00684-x
  • Sundar, D., Yu, Y., Katiyar, S. P., Putri, J. F., Dhanjal, J. K., Wang, J., Sari, A. N., Kolettas, E., Kaul, S. C., & Wadhwa, R. (2019). Wild type p53 function in p53Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: Bioinformatics and experimental evidence. Journal of Experimental & Clinical Cancer Research, 38(1), 103. https://doi.org/10.1186/s13046-019-1099-x
  • Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4
  • Tortorici, M. A., & Veesler, D. (2019). Structural insights into coronavirus entry. Advances in Virus Research, 105, 93–116. https://doi.org/10.1016/bs.aivir.2019.08.002
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292. https://doi.org/10.1016/j.cell.2020.02.058
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS Coronavirus. Journal of Virology, 94(7). https://doi.org/10.1128/JVI.00127-20
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904. https://doi.org/10.1016/j.cell.2020.03.045
  • WHO. (2020). World Health Organization “Solidarity” clinical trial for COVID-19 treatments. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments
  • Widodo, N., Kaur, K., Shrestha, B. G., Takagi, Y., Ishii, T., Wadhwa, R., & Kaul, S. C. (2007). Selective killing of cancer cells by leaf extract of Ashwagandha: Identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13(7), 2298–2306. https://doi.org/10.1158/1078-0432.CCR-06-0948
  • Widodo, N., Priyandoko, D., Shah, N., Wadhwa, R., & Kaul, S. C. (2010). Selective killing of cancer cells by Ashwagandha leaf extract and its component withanone involves ROS signaling. PLoS One, 5(10), e13536. https://doi.org/10.1371/journal.pone.0013536
  • Wu, K., Peng, G., Wilken, M., Geraghty, R. J., & Li, F. (2012). Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. Journal of Biological Chemistry, 287(12), 8904–8911. https://doi.org/10.1074/jbc.M111.325803
  • Yu, Y., Katiyar, S. P., Sundar, D., Kaul, Z., Miyako, E., Zhang, Z., Kaul, S. C., Reddel, R. R., & Wadhwa, R. (2017). Withaferin-A kills cancer cells with and without telomerase: Chemical, computational and experimental evidences. Cell Death & Disease, 8(4), e2755. https://doi.org/10.1038/cddis.2017.33
  • Zhang, Q., Chen, C. Z., Swaroop, M., Xu, M., Wang, L., Lee, J., Wang, A. Q., Pradhan, M., Hagen, N., Chen, L., Shen, M., Luo, Z., Xu, X., Xu, Y., Huang, W., Zheng, W., & Ye, Y. (2020). Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discovery, 6(1), 1–14. https://doi.org/10.1038/s41421-020-00222-5
  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.