413
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Isatin-based virtual high throughput screening, molecular docking, DFT, QM/MM, MD and MM-PBSA study of novel inhibitors of SARS-CoV-2 main protease

ORCID Icon, &
Pages 7852-7867 | Received 27 Jun 2020, Accepted 08 Mar 2021, Published online: 25 Mar 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Altun, A., Yokoyama, S., & Morokuma, K. (2008). Spectral tuning in visual pigments: An ONIOM (QM: MM) study on bovine rhodopsin and its mutants. The Journal of Physical Chemistry B, 112(22), 6814–6827. https://doi.org/10.1021/jp709730b
  • Astuti, I. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 407-412. https://doi.org/10.1016/j.dsx.2020.04.020
  • Azam, M., Al-Resayes, S., Wabaidur, S., Altaf, M., Chaurasia, B., Alam, M., Shukla, S., Gaur, P., Albaqami, N., Islam, M., & Park, S. (2018). Synthesis, structural characterization and antimicrobial activity of Cu (II) and Fe (III) complexes incorporating azo-azomethine ligand. Molecules, 23(4), 813. https://doi.org/10.3390/molecules23040813
  • Benhangi, H. M., Ahmadi, S., Hakimi, M., Molafilabi, A., Faraji, H., & Mashkani, B. (2019). Protective effects of isatin and its synthetic derivatives against iron, copper and lead toxicity. Toxicology in Vitro, 54, 232–236. https://doi.org/10.1016/j.tiv.2018.10.004
  • Berendsen, H. J., Postma, J., van, van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2020). Identification of bioactive molecules from Tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, Just-Accepted, 1–13.
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
  • Chen, L.-R., Wang, Y.-C., Lin, Y. W., Chou, S.-Y., Chen, S.-F., Liu, L. T., Wu, Y.-T., Kuo, C.-J., Chen, T. S.-S., & Juang, S.-H. (2005). Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorganic & Medicinal Chemistry Letters, 15(12), 3058–3062. https://doi.org/10.1016/j.bmcl.2005.04.027
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (2020). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics, Just-Accepted, 1–18.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Farrokhpour, H., Pakatchian, V., Hajipour, A., Abyar, F., Chermahini, A. N., & Fakhari, F. (2015). Protein–ligand interaction study of signal transducer smoothened protein with different drugs: Molecular docking and QM/MM calculations. RSC Advances, 5(84), 68829–68838. https://doi.org/10.1039/C5RA08609D
  • Ghahremanpour, M. M., Tirado-Rives, J., Deshmukh, M., Ippolito, J. A., Zhang, C.-H., Cabeza de Vaca, I., Liosi, M.-E., Anderson, K. S., & Jorgensen, W. L. (2020). Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Medicinal Chemistry Letters, 11(12), 2526–2533. https://doi.org/10.1021/acsmedchemlett.0c00521
  • Havranek, B., & Islam, S. M. (2020). An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease. Journal of Biomolecular Structure and Dynamics, 1–12.
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., & Peng, C. (2020). Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582, 289–293.
  • Kandeel, M., & Al-Nazawi, M. (2020). Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sciences, 251, 117627. https://doi.org/10.1016/j.lfs.2020.117627
  • Kosar, B., & Albayrak, C. (2011). Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl] phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1), 160–167. https://doi.org/10.1016/j.saa.2010.09.016
  • Kumar, A., Choudhir, G., Shukla, S. K., Sharma, M., Tyagi, P., Bhushan, A., & Rathore, M. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 1–21.
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Liu, W., Zhu, H.-M., Niu, G.-J., Shi, E.-Z., Chen, J., Sun, B., Chen, W.-Q., Zhou, H.-G., & Yang, C. (2014). Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors. Bioorganic & Medicinal Chemistry, 22(1), 292–302. https://doi.org/10.1016/j.bmc.2013.11.028
  • Malkhasian, A. Y., & Howlin, B. J. (2016). Docking and DFT studies on ligand binding to Quercetin 2,3-dioxygenase. Journal of Biomolecular Structure & Dynamics, 34(11), 2453–2461. https://doi.org/10.1080/07391102.2015.1123190
  • Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: Consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
  • Mittal, L., Kumari, A., Srivastava, M., Singh, M., & Asthana, S. (2020). Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. Journal of Biomolecular Structure and Dynamics, 1–26.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–6.
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Padron, J. A., Carrasco, R., & Pellon, R. F. (2002). Molecular descriptor based on a molar refractivity partition using Randic-type graph-theoretical invariant. Journal of Pharmaceutical Sciences, 5(3), 258–266.
  • Pakravan, P., Kashanian, S., Khodaei, M. M., & Harding, F. J. (2013). Biochemical and pharmacological characterization of isatin and its derivatives: From structure to activity. Pharmacological Reports: PR, 65(2), 313–335. https://doi.org/10.1016/s1734-1140(13)71007-7
  • Pant, S., Singh, M., Ravichandiran, V., Murty, U. S. N., & Srivastava, H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure and Dynamics, 1–10.
  • Pradhan, S., & Sinha, C. (2018). Sulfonamide derivatives as Mycobacterium tuberculosis inhibitors: In silico approach. In Silico Pharmacology, 6(1), 4. https://doi.org/10.1007/s40203-018-0041-9
  • Rao, P., Shukla, A., Parmar, P., Rawal, R. M., Patel, B., Saraf, M., & Goswami, D. (2020). Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Biophysical Chemistry, 264, 106425. https://doi.org/10.1016/j.bpc.2020.106425
  • Rondón-Villarreal, P., & López, W. O. C. (2020). Identification of potential natural neuroprotective molecules for Parkinson's disease by using chemoinformatics and molecular docking. Journal of Molecular Graphics and Modelling, 97, 107547. https://doi.org/10.1016/j.jmgm.2020.107547
  • Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, 102433-102437.
  • Rozhenko, A. B. (2014). Density functional theory calculations of enzyme–inhibitor interactions in medicinal chemistry and drug design. In L. Gorb, V. Kuzmin, & E. Muratov (Eds.), Application of computational techniques in pharmacy and medicine (pp. 207–240). Springer.
  • Selvam, P., Murgesh, N., Chandramohan, M., De Clercq, E., Keyaerts, E., Vijgen, L., Maes, P., Neyts, J., & Ranst, M. V. (2008). In vitro antiviral activity of some novel isatin derivatives against HCV and SARS-CoV viruses. Indian Journal of Pharmaceutical Sciences, 70(1), 91–94. https://doi.org/10.4103/0250-474X.40339
  • Shukla, R., Munjal, N. S., & Singh, T. R. (2019). Identification of novel small molecules against GSK3β for Alzheimer's disease using chemoinformatics approach. Journal of Molecular Graphics & Modelling, 91, 91–104. https://doi.org/10.1016/j.jmgm.2019.06.008
  • Singh, G. S., & Desta, Z. Y. (2012). Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chemical Reviews, 112(11), 6104–6155. https://doi.org/10.1021/cr300135y
  • Singh, N., Tiwari, S., Srivastava, K. K., & Siddiqi, M. I. (2015). Identification of novel inhibitors of Mycobacterium tuberculosis PknG using pharmacophore based virtual screening, docking, molecular dynamics simulation, and their biological evaluation. Journal of Chemical Information and Modeling, 55(6), 1120–1129. https://doi.org/10.1021/acs.jcim.5b00150
  • Song, C. M., Lim, S. J., & Tong, J. C. (2009). Recent advances in computer-aided drug design. Briefings in Bioinformatics, 10(5), 579–591. https://doi.org/10.1093/bib/bbp023
  • Tian, S., Wang, J., Li, Y., Li, D., Xu, L., & Hou, T. (2015). The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Reviews, 86, 2–10. https://doi.org/10.1016/j.addr.2015.01.009
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Ul Qamar, M. T., Alqahtani, S. M., Alamri, M. A., & Chen, L.-L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313-319.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wu, P., Hao, X., Lau, E. H., Wong, J. Y., Leung, K. S., Wu, J. T., Cowling, B. J., & Leung, G. M. (2020). Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Eurosurveillance, 25(3), 2000044. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000044
  • Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., & Wang, F.-S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet. Respiratory Medicine, 8(4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X
  • Zhang, Z., Li, Y., Lin, B., Schroeder, M., & Huang, B. (2011). Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics (Oxford, England), 27(15), 2083–2088. https://doi.org/10.1093/bioinformatics/btr331
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhou, L., Liu, Y., Zhang, W., Wei, P., Huang, C., Pei, J., Yuan, Y., & Lai, L. (2006). Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors. Journal of Medicinal Chemistry, 49(12), 3440–3443. https://doi.org/10.1021/jm0602357
  • Zoete, V., Daina, A., Bovigny, C., & Michielin, O. (2016). SwissSimilarity: A web tool for low to ultra high throughput ligand-based virtual screening. ACS Publications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.