285
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A review targeting the infection by CHIKV using computational and experimental approaches

, , , , , & show all
Pages 8127-8141 | Received 04 Jun 2020, Accepted 11 Mar 2021, Published online: 30 Mar 2021

References

  • Abbad, A., Perera, R. A., Anga, L., Faouzi, A., Minh, N. N. T., Malik, S. M. M. R., Iounes, N., Maaroufi, A., Van Kerkhove, M. D., Peiris, M., & Nourlil, J. (2019). Middle East respiratory syndrome coronavirus (MERS-CoV) neutralising antibodies in a high-risk human population, Morocco, November 2017 to January 2018. Eurosurveillance, 24(48), 43–50. https://doi.org/10.2807/1560-7917.ES.2019.24.48.1900244
  • Agarwal, T., Asthana, S., & Bissoyi, A. (2015). Molecular modeling and docking study to elucidate novel Chikungunya virus nsP2 protease inhibitors. Indian Journal of Pharmaceutical Sciences, 77(4), 453–460. https://doi.org/10.4103/0250-474x.164769
  • Ahmadi, A., Hassandarvish, P., Lani, R., Yadollahi, P., Jokar, A., Bakar, S. A., & Zandi, K. (2016). Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances, 6(73), 69421–69430. https://doi.org/10.1039/C6RA16640G
  • Ahmed, A., Ali, Y., Elmagboul, B., Mohamed, O., Elduma, A., Bashab, H., Mahamoud, A., Khogali, H., Elaagip, A., & Higazi, T. (2019). Dengue fever in the Darfur Area, Western Sudan. Emerging Infectious Diseases, 25(11), 2126–2126. https://doi.org/10.3201/eid2511.181766
  • Al-Anazi, M., Al-Najjar, B. O., & Khairuddean, M. (2018). Structure-based drug design studies toward the discovery of novel chalcone derivatives as potential epidermal growth factor receptor (EGFR) inhibitors. Molecules, 23(12), 3203. https://doi.org/10.3390/molecules23123203
  • Allard, P.-M., Leyssen, P., Martin, M.-T., Bourjot, M., Dumontet, V., Eydoux, C., Guillemot, J.-C., Canard, B., Poullain, C., Guéritte, F., & Litaudon, M. (2012). Antiviral chlorinated daphnane diterpenoid orthoesters from the bark and wood of Trigonostemon cherrieri. Phytochemistry, 84, 160–168. https://doi.org/10.1016/j.phytochem.2012.07.023
  • Bachal, R., Alagarasu, K., Singh, A., Salunke, A., Shah, P., & Cecilia, D. (2015). Higher levels of dengue-virus-specific IgG and IgA during pre-defervescence associated with primary dengue hemorrhagic fever. Archives of Virology, 160(10), 2435–2443. https://doi.org/10.1007/s00705-015-2519-7
  • Balzarini, J., Ruchko, E. A., Zakharova, E. K., Kameneva, I. Y., & Nawrozkij, M. B. (2014). Structural analogs of umifenovir. 1. Synthesis and biological activity of ethyl 5-hydroxy-1-methyl-2-(trans-2-phenylcyclopropyl)-1H-indole-3-carboxylate. Chemistry of Heterocyclic Compounds, 50(4), 489–495. https://doi.org/10.1007/s10593-014-1499-y
  • Bassetto, M., De Burghgraeve, T., Delang, L., Massarotti, A., Coluccia, A., Zonta, N., Gatti, V., Colombano, G., Sorba, G., Silvestri, R., Tron, G. C., Neyts, J., Leyssen, P., & Brancale, A. (2013). Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Research, 98(1), 12–18. https://doi.org/10.1016/j.antiviral.2013.01.002
  • Bhakat, S., & Soliman, M. E. (2015). Chikungunya virus (CHIKV) inhibitors from natural sources: A medicinal chemistry perspective. Journal of Natural Medicines, 69(4), 451–462. https://doi.org/10.1007/s11418-015-0910-z
  • Blaising, J., Polyak, S. J., & Pecheur, E. I. (2014). Arbidol as a broad-spectrum antiviral: An update. Antiviral Research, 107, 84–94. https://doi.org/10.1016/j.antiviral.2014.04.006
  • Boriskin, Y. S., Leneva, I. A., Pecheur, E. I., & Polyak, S. J. (2008). Arbidol: A broad-spectrum antiviral compound that blocks viral fusion. Current Medicinal Chemistry, 15(10), 997–1005. https://doi.org/10.2174/092986708784049658
  • Bourjot, M., Leyssen, P., Eydoux, C., Guillemot, J.-C., Canard, B., Rasoanaivo, P., Guéritte, F., & Litaudon, M. (2012). Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia, 83(6), 1076–1080. https://doi.org/10.1016/j.fitote.2012.05.004
  • Briolant, S., Garin, D., Scaramozzino, N., Jouan, A., & Crance, J. M. (2004). In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds: Synergistic effect of interferon-alpha and ribavirin combination. Antiviral Research, 61(2), 111–117. https://doi.org/10.1016/j.antiviral.2003.09.005
  • Burt, F. J., Chen, W., Miner, J. J., Lenschow, D. J., Merits, A., Schnettler, E., Kohl, A., Rudd, P. A., Taylor, A., Herrero, L. J., Zaid, A., Ng, L. F. P., & Mahalingam, S. (2017). Chikungunya virus: An update on the biology and pathogenesis of this emerging pathogen. The Lancet Infectious Diseases, 17(4), E107–E117. https://doi.org/10.1016/S1473-3099(16)30385-1
  • Busch, M., & Erickson, G. (2015). An overview of Chikungunya virus. Jaapa: Official Journal of the American Academy of Physician Assistants, 28(10), 54–57. https://doi.org/10.1097/01.JAA.0000470441.99693.e1
  • Caglioti, C., Lalle, E., Castilletti, C., Carletti, F., Capobianchi, M. R., & Bordi, L. (2013). Chikungunya virus infection: An overview. The New Microbiologica, 36(3), 211–227.
  • Cirne-Santos, C. C., Barros, C. d S., Nogueira, C. C. R., Azevedo, R. C., Yamamoto, K. A., Meira, G. L. S., Vasconcelos, Z. F. M. d., Ratcliffe, N. A., Teixeira, V. L., Schmidt-Chanasit, J., Ferreira, D. F., & Paixão, I. C. N. D. P. (2019). Inhibition by marine algae of Chikungunya virus isolated from patients in a recent disease outbreak in Rio de Janeiro. Frontiers in Microbiology, 10, 1-11. https://doi.org/10.3389/fmicb.2019.02426
  • Cummings, M. D., & Sekharan, S. (2019). Structure-based macrocycle design in small-molecule drug discovery and simple metrics to identify opportunities for macrocyclization of small-molecule ligands. Journal of Medicinal Chemistry, 62(15), 6843–6853. https://doi.org/10.1021/acs.jmedchem.8b01985
  • da Rocha, L. F., de Lima, H. D., Correia, R. M., Freitas, M. R. D. A., de Melo, P. R. S., & de Mattos, A. G. L. (2017). Electroneurographic findings in patients with subacute/chronic articular symptoms of Chikungunya fever and neuropathic complaints preliminary results. Annals of the Rheumatic Diseases, 76, 990–991.
  • Dawood, S., Zarina, S., & Bano, S. (2014). Docking studies of antidepressants against single crystal structure of tryptophan 2,3-dioxygenase using Molegro Virtual Docker software. Pakistan Journal of Pharmaceutical Sciences, 27(5 Spec no), 1529–1539.
  • de Vries, E., Du, W. J., Guo, H. B., & de Haan, C. A. M. (2020). Influenza A virus hemagglutinin-neuraminidase-receptor balance: Preserving virus motility. Trends in Microbiology, 28(1), 57–67. https://doi.org/10.1016/j.tim.2019.08.010
  • Deeba, F., Malik, M. Z., Naqvi, I. H., Haider, M. S. H., Shafat, Z., Sinha, P., Ishrat, R., Ahmed, A., & Parveen, S. (2017). Potential entry inhibitors of the envelope protein (E2) of Chikungunya virus: In silico structural modeling, docking and molecular dynamic studies. Virusdisease, 28(1), 39–49. https://doi.org/10.1007/s13337-016-0356-2
  • Delang, L., Segura Guerrero, N., Tas, A., Quérat, G., Pastorino, B., Froeyen, M., Dallmeier, K., Jochmans, D., Herdewijn, P., Bello, F., Snijder, E. J., de Lamballerie, X., Martina, B., Neyts, J., van Hemert, M. J., & Leyssen, P. (2014). Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. The Journal of Antimicrobial Chemotherapy, 69(10), 2770–2784. https://doi.org/10.1093/jac/dku209
  • Delang, L., Yen, P., Vazeille, M., Neyts, J., & Failloux, A. (2017). Antiviral drug-resistant Chikungunya viruses can be transmitted by their mosquito vectors. Tropical Medicine & International Health, 22, 15–16.
  • Delogu, I., Pastorino, B., Baronti, C., Nougairede, A., Bonnet, E., & de Lamballerie, X. (2011). In vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant. Antiviral Research, 90(3), 99–107. https://doi.org/10.1016/j.antiviral.2011.03.182
  • Di Mola, A., Peduto, A., La Gatta, A., Delang, L., Pastorino, B., Neyts, J., Leyssen, P., de Rosa, M., & Filosa, R. (2014). Structure-activity relationship study of arbidol derivatives as inhibitors of chikungunya virus replication. Bioorganic & Medicinal Chemistry, 22(21), 6014–6025. https://doi.org/10.1016/j.bmc.2014.09.013
  • Durgesh, K., Mahendra, K. M., Kamlesh, K., Rajan, P., Abhilash, J., & Prashant, S. (2020). In-silico prediction of novel drug-target complex of nsP3 of CHIKV through molecular dynamic simulation. Heliyon, 6(8), e04720.
  • Dyer, O. (2019). Polio: WHO declares type 3 poliovirus eradicated after 31 year campaign. British Medical Journal, 367:I6201.
  • Ekins, S., Mestres, J., & Testa, B. (2007). In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. British Journal of Pharmacology, 152(1), 9–20. https://doi.org/10.1038/sj.bjp.0707305
  • Evans-Gilbert, T. (2020). Vertically transmitted chikungunya, Zika and dengue virus infections: The pathogenesis from mother to fetus and the implications of co-infections and vaccine development. International Journal of Pediatrics & Adolescent Medicine, 7(3), 107–111. https://doi.org/10.1016/j.ijpam.2019.05.004
  • Farias, L. A. B. G., Neto, R. D. P., & Campos, E. D. (2019). Chikungunya fever and mental illness: A poorly understood relationship needing additional study. Archives of Clinical Psychiatry, 46(4), 1–1. https://doi.org/10.1590/0101-60830000000206
  • Fink, S. L., Vojtech, L., Wagoner, J., Slivinski, N. S. J., Jackson, K. J., Wang, R., Khadka, S., Luthra, P., Basler, C. F., & Polyak, S. J. (2018). The antiviral drug arbidol inhibits Zika virus. Scientific Reports, 8(1), 8989. https://doi.org/10.1038/s41598-018-27224-4
  • Finney, L. J., Belchamber, K. B. R., Fenwick, P. S., Kemp, S. V., Edwards, M. R., Mallia, P., Donaldson, G., Johnston, S. L., Donnelly, L. E., & Wedzicha, J. A. (2019). Human rhinovirus impairs the innate immune response to bacteria in alveolar macrophages in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 199(12), 1496–1507. https://doi.org/10.1164/rccm.201806-1095OC
  • Fowkes, F. G. R., Price, J. F., Stewart, M. C. W., Butcher, I., Leng, G. C., & Pell, A. C. H. (2010). Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index a randomized controlled trial. JAMA, 303(9), 841–848. https://doi.org/10.1001/jama.2010.221
  • Fox, J. M., & Diamond, M. S. (2016). Immune-mediated protection and pathogenesis of Chikungunya virus. Journal of Immunology, 197(11), 4210–4218. https://doi.org/10.4049/jimmunol.1601426
  • Ganesan, V. K., Duan, B., & Reid, S. P. (2017). Chikungunya virus: Pathophysiology, mechanism, and modeling. Viruses, 9(12), 368. https://doi.org/10.3390/v9120368
  • Gao, Y. N., Goonawardane, N., Ward, J., Tuplin, A., & Harris, M. (2019). Multiple roles of the non-structural protein 3 (nsP3) alphavirus unique domain (AUD) during Chikungunya virus genome replication and transcription. PLOS Pathogens, 15(1), e1007239. https://doi.org/10.1371/journal.ppat.1007239
  • Gasque, P., Couderc, T., Lecuit, M., Roques, P., & Ng, L. F. (2015). Chikungunya virus pathogenesis and immunity. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.), 15(4), 241–249. https://doi.org/10.1089/vbz.2014.1710
  • Ghildiyal, R., Gupta, S., Gabrani, R., Joshi, G., Gupta, A., Chaudhary, V. K., & Gupta, V. (2019). In silico study of chikungunya polymerase, a potential target for inhibitors. Virusdisease, 30(3), 394–402. https://doi.org/10.1007/s13337-019-00547-0
  • Gomperts, R., Frisch, M., Scalmani, G., & Leback, B. (2014). Current status of the project to enable Gaussian 09 on GPGPUs. Abstracts of Papers of the American Chemical Society, 1–20.
  • Goupil, B. A., & Mores, C. N. (2016). A review of Chikungunya virus-induced arthralgia: Clinical manifestations, therapeutics, and pathogenesis. The Open Rheumatology Journal, 10(1), 129–140. https://doi.org/10.2174/1874312901610010129
  • Gowen, B., Barnard, D., Wong, M.-H., Larson, D., Wu, J., Ennis, J., Morrey, J., & Turner, J. (2010). Single-dose intranasal delivery with DEF201 (Adenovirus Vectored Mouse Interferon-alpha) protects against phlebovirus and sars coronavirus challenge. Antiviral Research, 86(1), A34. https://doi.org/10.1016/j.antiviral.2010.02.376
  • Gratia, M., Vende, P., Charpilienne, A., Baron, H. C., Laroche, C., Sarot, E., Pyronnet, S., Duarte, M., & Poncet, D. (2016). Challenging the roles of NSP3 and untranslated regions in rotavirus mRNA translation. Plos One, 11(1), e0145998. https://doi.org/10.1371/journal.pone.0145998
  • Gupta, A., Gandhimathi, A., Sharma, P., & Jayaram, B. (2007). ParDOCK: An all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein and Peptide Letters, 14(7), 632–646. https://doi.org/10.2174/092986607781483831
  • Hashem, A. M., Algaissi, A., Agrawal, A. S., Al-Amri, S. S., Alhabbab, R. Y., Sohrab, S. S., S Almasoud, A., Alharbi, N. K., Peng, B.-H., Russell, M., Li, X., & Tseng, C.-T. K. (2019). A highly immunogenic, protective, and safe adenovirus-based vaccine expressing middle east respiratory syndrome coronavirus S1-CD40L fusion protein in a transgenic human dipeptidyl peptidase 4 mouse model. The Journal of Infectious Diseases, 220(10), 1558–1567. https://doi.org/10.1093/infdis/jiz137
  • Haviernik, J., Štefánik, M., Fojtíková, M., Kali, S., Tordo, N., Rudolf, I., Hubálek, Z., Eyer, L., & Ruzek, D. (2018). Arbidol (Umifenovir): A broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses. Viruses, 10(4), 184. https://doi.org/10.3390/v10040184
  • Hazama, K., Shiihara, T., Tsukagoshi, H., Matsushige, T., Dowa, Y., & Watanabe, M. (2019). Rhinovirus-associated acute encephalitis/encephalopathy and cerebellitis. Brain & Development, 41(6), 551–554. https://doi.org/10.1016/j.braindev.2019.02.014
  • Horie, Y., Nakagomi, O., Koshimura, Y., Nakagomi, T., Suzuki, Y., Oka, T., Sasaki, S., Matsuda, Y., & Watanabe, S. (1999). Diarrhea induction by rotavirus NSP4 in the homologous mouse model system. Virology, 262(2), 398–407. https://doi.org/10.1006/viro.1999.9912
  • Hsu, K. C., Chen, Y. F., Lin, S. R., & Yang, J. M. (2011). iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12(Suppl 1), S33. https://doi.org/10.1186/1471-2105-12-S1-S33
  • Hwu, J. R., Kapoor, M., Tsay, S.-C., Lin, C.-C., Hwang, K. C., Horng, J.-C., Chen, I.-C., Shieh, F.-K., Leyssen, P., & Neyts, J. (2015). Benzouracil-coumarin-arene conjugates as inhibiting agents for chikungunya virus. Antiviral Research, 118, 103–109. https://doi.org/10.1016/j.antiviral.2015.03.013
  • Ismail, A. A., Mahboob, T., Raju, C. S., & Sekaran, S. D. (2019). Zika virus modulates blood-brain barrier of brain microvascular endothelial cells. Tropical Biomedicine, 36(4), 888–897.
  • Jacome-Santos, H., Amanajas, T. D., Gomes, S. T. M., Machado, L. F. A., Neto, A. R. L. P., & Alves, S. D. (2020). Epstein-Barr virus (EBV) in periodontal sites of human immunodeficiency virus (HIV)-positive individuals in North Brazil: A cross-sectional study. Quintessence International, 51(1), 18–26.
  • Jagannadh, B., Kunwar, A. C., Thangavelu, R. P., & Osawa, E. (1996). New technique for conformational sampling of cyclic molecules using the AMBER force field: Application to 18-crown-6. The Journal of Physical Chemistry, 100(34), 14339–14342. https://doi.org/10.1021/jp960929z
  • Jain, J., Kumari, A., Somvanshi, P., Grover, A., Pai, S., & Sunil, S. (2017). In silico analysis of natural compounds targeting structural and nonstructural proteins of chikungunya virus. F1000Research, 6, 1601. https://doi.org/10.12688/f1000research.12301.2
  • Jarrahpour, A., Motamedifar, M., Zarei, M., Youssoufi, M. H., Mimouni, M., Chohan, Z. H., & Hadda, T. B. (2010). Petra, osiris, and molinspiration together as a guide in drug design: Predictions and correlation structure/antibacterial activity relationships of new N-sulfonyl monocyclic-lactams. Phosphorus Sulfur and Silicon and the Related Elements, 185(2), 491–497. https://doi.org/10.1080/10426500902953953
  • Jeanne, M., Eve, S., Pasquier, J., Blaizot, X., Turck, M., & Raginel, T. (2019). Human papillomaviruses vaccination: Vaccine intentions of parents of children aged 10 to 11s in Normandy schools after an information campaign during the 2015-2016 school year. La Presse Médicale, 48(12), E369–E381. https://doi.org/10.1016/j.lpm.2019.10.001
  • Karlas, A., Berre, S., Couderc, T., Varjak, M., Braun, P., Meyer, M., Gangneux, N., Karo-Astover, L., Weege, F., Raftery, M., Schönrich, G., Klemm, U., Wurzlbauer, A., Bracher, F., Merits, A., Meyer, T. F., & Lecuit, M. (2016). A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nature Communications, 7, 11320. https://doi.org/10.1038/ncomms11320
  • Kattel, V., Sarraf, D. P., & Agrawal, Y. (2019). Doxycycline a game changer against acute undifferentiated febrile illness in the himalayas. Transactions of the Royal Society of Tropical Medicine and Hygiene, 113, S219–S219.
  • Kaur, P., & Chu, J. J. H. (2013). Chikungunya virus: An update on antiviral development and challenges. Drug Discov Today, 18(19–20), 969–983. https://doi.org/10.1016/j.drudis.2013.05.002
  • Kaur, P., Thiruchelvan, M., Lee, R. C. H., Chen, H., Chen, K. C., Ng, M. L., & Chu, J. J. H. (2013). Inhibition of Chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrobial Agents and Chemotherapy, 57(1), 155–167. https://doi.org/10.1128/AAC.01467-12
  • Keramagi, A. R., & Skariyachan, S. (2018). Prediction of binding potential of natural leads against the prioritized drug targets of chikungunya and dengue viruses by computational screening. 3 Biotech, 8(6):274. https://doi.org/10.1007/s13205-018-1303-2
  • Khalili, M., Naderi, H. R., Salehnia, N., & Abiri, Z. (2016). Detection of Coxiella burnetii in acute undifferentiated febrile illnesses (AUFIs) in Iran. Tropical Doctor, 46(4), 221–224. https://doi.org/10.1177/0049475515624855
  • Khan, M., Santhosh, S. R., Tiwari, M., Rao, P. V. L., & Parida, M. (2010). Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells. Journal of Medical Virology, 82(5), 817–824. https://doi.org/10.1002/jmv.21663
  • Kobinger, G. P., Figueredo, J. M., Rowe, T., Zhi, Y., Gao, G., Sanmiguel, J. C., Bell, P., Wivel, N. A., Zitzow, L. A., Flieder, D. B., Hogan, R. J., & Wilson, J. M. (2007). Adenovirus-based vaccine prevents pneumonia in ferrets challenged with the SARS coronavirus and stimulates robust immune responses in macaques. Vaccine, 25(28), 5220–5231. https://doi.org/10.1016/j.vaccine.2007.04.065
  • Kumar, D., Kumari, K., Jayaraj, A., & Singh, P. (2020a). Development of a theoretical model for the inhibition of nsP3 protease of Chikungunya virus using pyranooxazoles. Journal of Biomolecular Structure and Dynamics., 30(10), 3018–3034.
  • Kumar, D., Singh, P., Jayaraj, A., Kumar, V., Kumari, K., Chandra, R., & Ramappa, V. K. (2020b). Selective docking of pyranooxazoles against nsP2 of CHIKV eluted through isothermally and non-isothermally MD simulations. ChemistrySelect, 5(14), 4210–4220. https://doi.org/10.1002/slct.202000768
  • Kumar, D., Singh, P., Jayaraj, A., Kumar, V., Kumari, K., & Patel, R. (2019a). A theoretical model to study the interaction of erythro-noscapines with nsP3 protease of Chikungunya virus. ChemistrySelect, 4(17), 4892–4900. https://doi.org/10.1002/slct.201803360
  • Kumar, D., Singh, P., Jayaraj, A., Kumar, V., Kumari, K., & Patel, R. (2019b). A theoretical model to study the interaction of erythro‐noscapines with nsP3 protease of Chikungunya virus. ChemistrySelect, 4(17), 4892–4900. https://doi.org/10.1002/slct.201803360
  • Kumar, M., Topno, R. K., Dikhit, M. R., Bhawana, Sahoo, G. C., & Madhukar, M. (2019c). Molecular docking studies of chloroquine and its derivatives against P23(pro-zbd) domain of chikungunya virus: Implication in designing of novel therapeutic strategies. Journal of Cellular Biochemistry, 120(10), 18298–18308. https://doi.org/10.1002/jcb.29139
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lee, N., & Qureshi, S. T. (2013). Other Viral pneumonias: coronavirus, respiratory syncytial virus, adenovirus, hantavirus. Critical Care Clinics, 29(4), 1045–1068. https://doi.org/10.1016/j.ccc.2013.07.003
  • Lilley, C. E., Groutsi, F., Han, Z. Q., Anderson, P., Latchman, D. S., & Coffin, R. S. (2000). Multiply disabled herpes simplex virus vectors for gene delivery to the central nervous system. European Journal of Neuroscience, 12, 308–308.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Liu, L. S., Zhang, Y. Q., Liu, G. Z., Li, W., Zhang, X. Z., & Zanchetti, A. (2006). FEVER study: A trial further supporting the concept of a blood pressure-independent stroke protective effect by dihydropyridines – Reply. Journal of Hypertension, 24(6), 1215–1216. https://doi.org/10.1097/01.hjh.0000226216.26431.7b
  • Liu, Q., Xiong, H-r., Lu, L., Liu, Y-y., Luo, F., Hou, W., & Yang, Z-q. (2013). Antiviral and anti-inflammatory activity of arbidol hydrochloride in influenza A (H1N1) virus infection. Acta Pharmacologica Sinica, 34(8), 1075–1083. https://doi.org/10.1038/aps.2013.54
  • Lloyd, J., Copaciu, R., Yahyabeik, A., DeWit, C., Cummings, K., Lacey, M., & Su, Q. (2019). Characterization of polyclonal antibodies to herpes simplex virus types 1 and 2. Journal of Histotechnology, 42(4), 202–214. https://doi.org/10.1080/01478885.2019.1683132
  • Lohidakshan, K., Rajan, M., Ganesh, A., Paul, M., & Jerin, J. (2018). Pass and Swiss ADME collaborated in silico docking approach to the synthesis of certain pyrazoline spacer compounds for dihydrofolate reductase inhibition and antimalarial activity. Bangladesh Journal of Pharmacology, 13(1), 23–29. https://doi.org/10.3329/bjp.v13i1.33625
  • Lopez-Tapia, F., Lou, Y., Brotherton-Pleiss, C., Kuglstatter, A., So, S. S., & Kondru, R. (2019). A potent seven-membered cyclic BTK (Bruton's tyrosine Kinase) chiral inhibitor conceived by structure-based drug design to lock its bioactive conformation. Bioorganic & Medicinal Chemistry Letters, 29(9), 1074–1078. https://doi.org/10.1016/j.bmcl.2019.03.001
  • Mackenzie, I. S., MacDonald, T. M., Shakir, S., Dryburgh, M., Mantay, B. J., McDonnell, P., & Layton, D. (2012). Influenza H1N1 (swine flu) vaccination: A safety surveillance feasibility study using self-reporting of serious adverse events and pregnancy outcomes. British Journal of Clinical Pharmacology, 73(5), 801–811. https://doi.org/10.1111/j.1365-2125.2011.04142.x
  • Macy, E., Bernstein, J. A., Castells, M. C., Gawchik, S. M., Lee, T. H., Settipane, R. A., Simon, R. A., Wald, J., & Woessner, K. M. (2007). Aspirin challenge and desensitization for aspirin-exacerbated respiratory disease: A practice paper. Annals of Allergy Asthma & Immunology, 98(2), 172–174. https://doi.org/10.1016/S1081-1206(10)60692-8
  • Madhukar, G., & Subbarao, N. (2019). Identification of potent and novel phosphatidylinositol 3-Kinase catalytic subunit alpha inhibitors: A structure-based drug design approach. Journal of Biomolecular Structure & Dynamics, 37, 28–29.
  • Mahajan, D. T., Masand, V. H., Patil, K. N., Ben Hadda, T., & Rastija, V. (2013). Integrating GUSAR and QSAR analyses for antimalarial activity of synthetic prodiginines against multi drug resistant strain. Medicinal Chemistry Research, 22(5), 2284–2292. https://doi.org/10.1007/s00044-012-0223-7
  • Masand, V. H., Mahajan, D. T., Patil, K. N., Hadda, T. B., Youssoufi, M. H., Jawarkar, R. D., & Shibi, I. G. (2013). Optimization of antimalarial activity of synthetic prodiginines: QSAR, GUSAR, and CoMFA analyses. Chemical Biology & Drug Design, 81(4), 527–536. https://doi.org/10.1111/cbdd.12099
  • Mills, N. (2006). ChemDraw ultra 10.0. Journal of the American Chemical Society, 128(41), 13649–13650. https://doi.org/10.1021/ja0697875
  • Moizéis, R. N. C., Fernandes, T. A. A. d M., Guedes, P. M. d M., Pereira, H. W. B., Lanza, D. C. F., Azevedo, J. W. V. d., Galvão, J. M. d A., & Fernandes, J. V. (2018). Chikungunya fever: A threat to global public health. Pathogens and Global Health, 112(4), 182–194. https://doi.org/10.1080/20477724.2018.1478777
  • Mooers, B. H. M. (2018). Tools and methods to ease the development of scripts for making figures in PyMOL. Acta Crystallographica Section A Foundations and Advances, 74(a1), A423–A423. https://doi.org/10.1107/S0108767318095776
  • Mounce, B. C., Cesaro, T., Carrau, L., Vallet, T., & Vignuzzi, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Research, 142, 148–157. https://doi.org/10.1016/j.antiviral.2017.03.014
  • Moutelikova, R., Prodelalova, J., & Dufkova, L. (2015). Diversity of VP7, VP4, VP6, NSP2, NSP4, and NSP5 genes of porcine rotavirus C: Phylogenetic analysis and description of potential new VP7, VP4, VP6, and NSP4 genotypes. Archives of Virology, 160(7), 1715–1727.
  • Mukherjee, G., & Jayaram, B. (2013). A rapid identification of hit molecules for target proteins via physico-chemical descriptors. Physical Chemistry Chemical Physics: PCCP, 15(23), 9107–9116. https://doi.org/10.1039/c3cp44697b
  • Mullick, S., Das, S., Guha, S. K., Bera, D. K., Sengupta, S., Roy, D., Saha, P., Biswas, A., Das, M., Ray, K., Kundu, P. K., & Maji, A. K. (2011). Efficacy of chloroquine and sulphadoxine-pyrimethamine either alone or in combination before introduction of ACT as first-line therapy in uncomplicated Plasmodium falciparum malaria in Jalpaiguri District, West Bengal, India. Tropical Medicine & International Health: TM & IH, 16(8), 929–935. https://doi.org/10.1111/j.1365-3156.2011.02799.x
  • Narwal, M., Singh, H., Pratap, S., Malik, A., Kuhn, R. J., Kumar, P., & Tomar, S. (2018). Crystal structure of chikungunya virus nsP2 cysteine protease reveals a putative flexible loop blocking its active site. International Journal of Biological Macromolecules, 116, 451–462. https://doi.org/10.1016/j.ijbiomac.2018.05.007
  • Nguyen, P. T. V., Yu, H. B., & Keller, P. A. (2014). Discovery of in silico hits targeting the nsP3 macro domain of Chikungunya virus. Journal of Molecular Modeling, 20(5), 2216. https://doi.org/10.1007/s00894-014-2216-6
  • Nguyen, P. T. V., Yu, H. B., & Keller, P. A. (2015). Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches. Journal of Molecular Graphics & Modelling, 57, 1–8. https://doi.org/10.1016/j.jmgm.2015.01.001
  • Nothias-Scaglia, L.-F., Retailleau, P., Paolini, J., Pannecouque, C., Neyts, J., Dumontet, V., Roussi, F., Leyssen, P., Costa, J., & Litaudon, M. (2014). Jatrophane diterpenes as inhibitors of chikungunya virus replication: Structure-activity relationship and discovery of a potent lead. Journal of Natural Products, 77(6), 1505–1512. https://doi.org/10.1021/np500271u
  • Nyari, N., Maan, H. S., Sharma, S., Pandey, S. N., & Dhole, T. N. (2016). Identification and genetic characterization of chikungunya virus from Aedes mosquito vector collected in the Lucknow district, North India. Acta Tropica, 158, 117–124. https://doi.org/10.1016/j.actatropica.2016.02.019
  • Ogihara, N., & Haley-Vicente, D. (2002). Protein target discovery and characterization - DS modeling and discovery studio streamline target discovery. Genetic Engineering News, 22(21), 77.
  • Oo, A., Hassandarvish, P., Chin, S. P., Lee, V. S., Abu Bakar, S., & Zandi, K. (2016). Silico study on anti-Chikungunya virus activity of hesperetin. PeerJ, 4, e2602. https://doi.org/10.7717/peerj.2602
  • Park, E., & Griffin, D. E. (2009). The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology, 388(2), 305–314. https://doi.org/10.1016/j.virol.2009.03.031
  • Peters, M. J., Woolfall, K., Khan, I., Deja, E., Mouncey, P. R., Wulff, J., Mason, A., Agbeko, R. S., Draper, E. S., Fenn, B., Gould, D. W., Koelewyn, A., Klein, N., Mackerness, C., Martin, S., O’Neill, L., Ray, S., Ramnarayan, P., Tibby, S., … Rowan, K. M, the FEVER Investigators on behalf of the Paediatric Intensive Care Society Study Group (PICS-SG) (2019). Permissive versus restrictive temperature thresholds in critically ill children with fever and infection: A multicentre randomized clinical pilot trial. Critical Care, 23, 1–19. https://doi.org/10.1186/s13054-019-2354-4
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pichler, V., Malandruccolo, C., Serini, P., Bellini, R., Severini, F., Toma, L., Di Luca, M., Montarsi, F., Ballardini, M., Manica, M., Petrarca, V., Vontas, J., Kasai, S., Della Torre, A., & Caputo, B. (2019). Phenotypic and genotypic pyrethroid resistance of Aedes albopictus, with focus on the 2017 chikungunya outbreak in Italy. Pest Management Science, 75(10), 2642–2651. https://doi.org/10.1002/ps.5369
  • Pohjala, L., Utt, A., Varjak, M., Lulla, A., Merits, A., Ahola, T., & Tammela, P. (2011). Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays. PLoS One, 6(12), e28923. https://doi.org/10.1371/journal.pone.0028923
  • Proskurnina, E. V., Izmailov, D. Y., Sozarukova, M. M., Zhuravleva, T. A., Leneva, I. A., & Poromov, A. A. (2020). Antioxidant potential of antiviral drug umifenovir. Molecules, 25(7), 1577. https://doi.org/10.3390/molecules25071577
  • Pshenichnaya, N. Y., Bulgakova, V. A., Lvov, N. I., Poromov, A. A., Selkova, E. P., Grekova, A. I., Shestakova, I. V., Maleev, V. V., & Leneva, I. A. (2019). Clinical efficacy of umifenovir in influenza and ARVI (study ARBITR). Terapevticheskii Arkhiv, 91(3), 56–63. https://doi.org/10.26442/00403660.2019.03.000127
  • Ramière, C., Charre, C., Miailhes, P., Bailly, F., Radenne, S., Uhres, A.-C., Brochier, C., Godinot, M., Chiarello, P., Pradat, P., Cotte, L., Astrie, M., Augustin-Normand, C., François, B., Biron, F., Boibieux, A., Brochier, C., Braun, E., Brunel, F., … Uhres, A.-C, Lyon Acute Hepatitis Study Group (2019). Patterns of Hepatitis C virus transmission in human immunodeficiency virus (HIV)-infected and HIV-negative men who have sex with men. Clinical Infectious Diseases, 69(12), 2127–2135. https://doi.org/10.1093/cid/ciz160
  • Rashad, A. A., Mahalingam, S., & Keller, P. A. (2014). Chikungunya virus: Emerging targets and new opportunities for medicinal chemistry. Journal of Medicinal Chemistry, 57(4), 1147–1166. https://doi.org/10.1021/jm400460d
  • Robinson, M. C. (1955). An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952-53. I. Clinical features. Transactions of the Royal Society of Tropical Medicine and Hygiene, 49(1), 28–32. https://doi.org/10.1016/0035-9203(55)90080-8
  • Rothan, H. A., Bahrani, H., Abdulrahman, A. Y., Mohamed, Z., Teoh, T. C., Othman, S., Rashid, N. N., Rahman, N. A., & Yusof, R. (2016). Mefenamic acid in combination with ribavirin shows significant effects in reducing chikungunya virus infection in vitro and in vivo. Antiviral Research, 127, 50–56. https://doi.org/10.1016/j.antiviral.2016.01.006
  • Rudolph, T., Puls, M., Anderegg, C., Ebert, L., Broehan, M., Rudin, A., & Kowal, J. (2008). MARVIN: A medical research application framework based on open source software. Computer Methods and Programs in Biomedicine, 91(2), 165–174. https://doi.org/10.1016/j.cmpb.2008.04.007
  • Salvador, B., Zhou, Y. C., Michault, A., Muench, M. O., & Simmons, G. (2009). Characterization of Chikungunya pseudotyped viruses: Identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology, 393(1), 33–41. https://doi.org/10.1016/j.virol.2009.07.013
  • Sanchez, J. S., Canon, A. M., & Lombo, J. C. (2019). Sub-acute and chronic symptoms of the Chikungunya fever in a group of adults in Colombia. Biomedica, 39(3), 587–594. https://doi.org/10.7705/biomedica.4350
  • Sangeetha, K., Purushothaman, I., & Rajarajan, S. (2017). Spectral characterisation, antiviral activities, in silico ADMET and molecular docking of the compounds isolated from Tectona grandis to chikungunya virus. Biomedicine & Pharmacotherapy, 87, 302–310.
  • Satheesh, G., Prabhu, N. P., & Venkataramana, M. (2014). 3D modeling of dengue virus NS4B and Chikungunya virus nsP4: Identification of a common drug target and designing a single antiviral inhibitor. Current Computer-Aided Drug Design, 10(4), 361–373. https://doi.org/10.2174/1573409911666150407161535
  • Satyanarayana, M. (2019). VACCINES Ebola vaccines were put to the test in the DRC. Chemical & Engineering News, 97(47), 42–42.
  • Sawicki, D. L., Perri, S., Polo, J. M., & Sawicki, S. G. (2006). Role for nsP2 proteins in the cessation of alphavirus minus-strand synthesis by host cells. Journal of Virology, 80(1), 360–371. https://doi.org/10.1128/JVI.80.1.360-371.2006
  • Schwartz, O., & Albert, M. L. (2010). Biology and pathogenesis of chikungunya virus. Nature Reviews. Microbiology, 8(7), 491–500. https://doi.org/10.1038/nrmicro2368
  • Seyedi, S. S., Shukri, M., Hassandarvish, P., Oo, A., Shankar, E. M., & Abubakar, S. (2016). Computational approach towards exploring potential anti-Chikungunya activity of selected flavonoids. Scientific Reports, 6, 1-8. https://doi.org/10.1038/srep24027
  • Sharma, R., Fatma, B., Saha, A., Bajpai, S., Sistla, S., Dash, P. K., Parida, M., Kumar, P., & Tomar, S. (2016). Inhibition of chikungunya virus by picolinate that targets viral capsid protein. Virology, 498, 265–276. https://doi.org/10.1016/j.virol.2016.08.029
  • Silva, L. A., & Dermody, T. S. (2017). Chikungunya virus: Epidemiology, replication, disease mechanisms, and prospective intervention strategies. The Journal of Clinical Investigation, 127(3), 737–749. https://doi.org/10.1172/JCI84417
  • Silva, M. M. O., Tauro, L. B., Kikuti, M., Anjos, R. O., Santos, V. C., Gonçalves, T. S. F., Paploski, I. A. D., Moreira, P. S. S., Nascimento, L. C. J., Campos, G. S., Ko, A. I., Weaver, S. C., Reis, M. G., Kitron, U., & Ribeiro, G. S. (2019). Concomitant transmission of dengue, Chikungunya, and Zika viruses in Brazil: Clinical and epidemiological findings from surveillance for acute febrile illness. Clinical Infectious Diseases, 69(8), 1353–2238. https://doi.org/10.1093/cid/ciy1083
  • Simon, F., Javelle, E., Oliver, M., Leparc-Goffart, I., & Marimoutou, C. (2011). Chikungunya virus infection. Current Infectious Disease Reports, 13(3), 218–228. https://doi.org/10.1007/s11908-011-0180-1
  • Singh, K. D., Kirubakaran, P., Nagarajan, S., Sakkiah, S., Muthusamy, K., Velmurgan, D., & Jeyakanthan, J. (2012). Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of Chikungunya virus nsP2 protease. Journal of Molecular Modeling, 18(1), 39–51. https://doi.org/10.1007/s00894-011-1018-3
  • Singh, P., Kumar, D., Vishvakarma, V. K., Yadav, P., Jayaraj, A., & Kumari, K. (2019). Computational approach to study the synthesis of noscapine and potential of stereoisomers against nsP3 protease of CHIKV. Heliyon, 5(12), e02795. https://doi.org/10.1016/j.heliyon.2019.e02795
  • Singh, S. K., & Unni, S. K. (2011). Chikungunya virus: Host pathogen interaction. Reviews in Medical Virology, 21(2), 78–88. https://doi.org/10.1002/rmv.681
  • Singh, T., Biswas, D., & Jayaram, B. (2011). AADS-an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. Journal of Chemical Information and Modeling, 51(10), 2515–2527. https://doi.org/10.1021/ci200193z
  • Staples, J. E., Breiman, R. F., & Powers, A. M. (2009). Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 49(6), 942–948. https://doi.org/10.1086/605496
  • Vairo, F., Haider, N., Kock, R., Ntoumi, F., Ippolito, G., & Zumla, A. (2019). Chikungunya: Epidemiology, pathogenesis, clinical features, management, and prevention. Infectious Disease Clinics of North America, 33(4), 1003–1025. https://doi.org/10.1016/j.idc.2019.08.006
  • Vu, D. M., Jungkind, D., & Angelle Desiree, L. (2017). Chikungunya virus. Clinics in Laboratory Medicine, 37(2), 371–382.
  • Wang, Q., He, J. W., Wu, D., Wang, J., Yan, J., & Li, H. (2015). Interaction of alpha-cyperone with human serum albumin: Determination of the binding site by using discovery studio and via spectroscopic methods. Journal of Luminescence, 164, 81–85. https://doi.org/10.1016/j.jlumin.2015.03.025
  • Wang, Y. F., Sawicki, S. G., & Sawicki, D. L. (1994). Alphavirus Nsp3 functions to form replication complexes transcribing negative-strand RNA. Journal of Virology, 68(10), 6466–6475. https://doi.org/10.1128/JVI.68.10.6466-6475.1994
  • Weaver, S. C. (2014). Arrival of Chikungunya virus in the New World: Prospects for spread and impact on public health. PLoS Neglected Tropical Diseases, 8(6), e2921. https://doi.org/10.1371/journal.pntd.0002921
  • Wichit, S., Hamel, R., Bernard, E., Talignani, L., Diop, F., Ferraris, P., Liegeois, F., Ekchariyawat, P., Luplertlop, N., Surasombatpattana, P., Thomas, F., Merits, A., Choumet, V., Roques, P., Yssel, H., Briant, L., & Missé, D. (2017). Imipramine inhibits Chikungunya virus replication in human skin fibroblasts through interference with intracellular cholesterol trafficking. Scientific Reports, 7(1), 3145. https://doi.org/10.1038/s41598-017-03316-5
  • Wintachai, P., Kaur, P., Lee, R. C. H., Ramphan, S., Kuadkitkan, A., Wikan, N., Ubol, S., Roytrakul, S., Chu, J. J. H., & Smith, D. R. (2015). Activity of andrographolide against chikungunya virus infection. Scientific Reports, 5, 14179. https://doi.org/10.1038/srep14179
  • Wright, Z. V. F., Wu, N. C., Kadam, R. U., Wilson, I. A., & Wolan, D. W. (2017). Structure-based optimization and synthesis of antiviral drug Arbidol analogues with significantly improved affinity to influenza hemagglutinin. Bioorganic & Medicinal Chemistry Letters, 27(16), 3744–3748. https://doi.org/10.1016/j.bmcl.2017.06.074
  • Wyles, D. L. (2013). Antiviral resistance and the future landscape of Hepatitis C virus infection therapy. The Journal of Infectious Diseases, 207(suppl_1), S33–S39. https://doi.org/10.1093/infdis/jis761
  • Yadav, P. D., Patil, D. Y., & Mourya, D. T. (2018). Positivity of dengue and chikungunya among Crimean-Congo hemorrhagic fever-negative cases in India: 2013–2016. Journal of Infection and Public Health, 11(6), 900–901. https://doi.org/10.1016/j.jiph.2018.09.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.