354
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Understanding disorder-to-order transitions in protein–RNA complexes using molecular dynamics simulations

, , &
Pages 7915-7925 | Received 07 Jan 2021, Accepted 11 Mar 2021, Published online: 29 Mar 2021

References

  • Balcerak, A., Trebinska-Stryjewska, A., Konopinski, R., Wakula, M., & Grzybowska, E. A. (2019). RNA-protein interactions: disorder, moonlighting and junk contribute to eukaryotic complexity. Open Biology, 9(6), 190096 https://doi.org/10.1098/rsob.190096
  • Calabretta, S., & Richard, S. (2015). Emerging roles of disordered sequences in RNA-binding proteins. Trends in Biochemical Science, 40(11), 662–672. https://doi.org/10.1016/j.tibs.2015.08.012
  • Castello, A., Fischer, B., Frese, C. K., Horos, R., Alleaume, A. M., Foehr, S., Curk, T., Krijgsveld, J., & Hentze, M. W. (2016). Comprehensive identification of RNA-binding domains in human cells. Molecular Cell, 63(4), 696–710. https://doi.org/10.1016/j.molcel.2016.06.029
  • Cook, A. G., Fukuhara, N., Jinek, M., & Conti, E. (2009). Structures of the tRNA export factor in the nuclear and cytosolic states. Nature, 461(7260), 60–65. https://doi.org/10.1038/nature08394
  • Davey, N. E., Cyert, M. S., & Moses, A. M. (2015). Short linear motifs - ex nihilo evolution of protein regulation. Cell Communication and Signaling : CCS, 13(1), 43 https://doi.org/10.1186/s12964-015-0120-z
  • Dogan, J., Gianni, S., & Jemth, P. (2014). The binding mechanisms of intrinsically disordered proteins. Physical Chemistry Chemical Physics, 16(14), 6323–6331. https://doi.org/10.1039/c3cp54226b
  • Du, Z., & Uversky, V. N. (2017). A comprehensive survey of the roles of highly disordered proteins in type 2 diabetes. International Journal of Molecular Sciences, 18(10), 2010. https://doi.org/10.3390/ijms18102010
  • Goto-Ito, S., Ito, T., Kuratani, M., Bessho, Y., & Yokoyama, S. (2009). Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation. Nature Structural & Molecular Biology, 16(10), 1109–1115. https://doi.org/10.1038/nsmb.1653
  • Hu, G., Wu, Z., Uversky, V. N., & Kurgan, L. (2017). Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. International Journal of Molecular Sciences, 18(12), 2761. https://doi.org/10.3390/ijms18122761
  • Huang, Y., & Liu, Z. (2011). Anchoring intrinsically disordered proteins to multiple targets: Lessons from N-terminus of the p53 protein. International Journal of Molecular Sciences, 12(2), 1410–1430. https://doi.org/10.3390/ijms12021410
  • Ivanyi-Nagy, R., Davidovic, L., Khandjian, E. W., & Darlix, J. L. (2005). Disordered RNA chaperone proteins: From functions to disease. Cellular and Molecular Life Sciences : CMLS, 62(13), 1409–1417. https://doi.org/10.1007/s00018-005-5100-9
  • Järvelin, A. I., Noerenberg, M., Davis, I., & Castello, A. (2016). The new (dis)order in RNA regulation. Cell Communication and Signaling : CCS, 14(1), 9 https://doi.org/10.1186/s12964-016-0132-3
  • Kobayashi, T., Nureki, O., Ishitani, R., Yaremchuk, A., Tukalo, M., Cusack, S., Sakamoto, K., & Yokoyama, S. (2003). Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nature Structural & Molecular Biology, 10(6), 425–432. https://doi.org/10.1038/nsb934
  • Kowalinski, E., Lunardi, T., McCarthy, A. A., Louber, J., Brunel, J., Grigorov, B., Gerlier, D., & Cusack, S. (2011). Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell, 147(2), 423–435. https://doi.org/10.1016/j.cell.2011.09.039
  • Kulkarni, P., & Uversky, V. N. (2019). Intrinsically disordered proteins in chronic diseases. Biomolecules, 9(4), 147. https://doi.org/10.3390/biom9040147
  • Liu, S., Mozaffari-Jovin, S., Wollenhaupt, J., Santos, K. F., Theuser, M., Dunin-Horkawicz, S., Fabrizio, P., Bujnicki, J. M., Lührmann, R., & Wahl, M. C. (2015). A composite double-/single-stranded RNA-binding region in protein Prp3 supports tri-snRNP stability and splicing. eLife, 4, e07320 https://doi.org/10.7554/eLife.07320
  • Mollica, L., Bessa, L. M., Hanoulle, X., Jensen, M. R., Blackledge, M., & Schneider, R. (2016). Binding mechanisms of intrinsically disordered proteins: Theory, simulation, and experiment. Frontiers in Molecular Biosciences, 3, 52 https://doi.org/10.3389/fmolb.2016.00052
  • Niewoehner, O., Jinek, M., & Doudna, J. A. (2014). Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Research, 42(2), 1341–1353. https://doi.org/10.1093/nar/gkt922
  • Osawa, T., Inanaga, H., Sato, C., & Numata, T. (2015). Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog. Molecular Cell, 58(3), 418–430. https://doi.org/10.1016/j.molcel.2015.03.018
  • Rajamani, D., Thiel, S., Vajda, S., & Camacho, C. J. (2004). Anchor residues in protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 101(31), 11287–11292. https://doi.org/10.1073/pnas.0401942101
  • Srivastava, A., Ahmad, S., & Gromiha, M. M. (2018). Deciphering RNA-recognition patterns of intrinsically disordered proteins. International Journal of Molecular Sciences, 19(6), 1595. https://doi.org/10.3390/ijms19061595
  • Srivastava, A., Yesudhas, D., Ramakrishnan, C., Ahmad, S., & Gromiha, M. M. (2020). Role of disordered regions in transferring tyrosine to its cognate tRNA. International Journal of Biological Macromolecules, 150, 705–713. https://doi.org/10.1016/j.ijbiomac.2020.02.070
  • Tesmer, V. M., Lennarz, S., Mayer, G., & Tesmer, J. J. (2012). Molecular mechanism for inhibition of g protein-coupled receptor kinase 2 by a selective RNA aptamer. Structure (London, England : 1993), 20(8), 1300–1309. https://doi.org/10.1016/j.str.2012.05.002
  • Uversky, V. N., & Dunker, A. K. (2013). The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biology Reports, 5, 1 https://doi.org/10.3410/B5-1
  • Varadi, M., Zsolyomi, F., Guharoy, M., & Tompa, P. (2015). Functional advantages of conserved intrinsic disorder in RNA-binding proteins. PloS One, 10(10), e0139731 https://doi.org/10.1371/journal.pone.0139731
  • Wang, C., Uversky, V. N., & Kurgan, L. (2016). Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea. Proteomics, 16(10), 1486–1498. https://doi.org/10.1002/pmic.201500177
  • Wu, Z., Hu, G., Yang, J., Peng, Z., Uversky, V. N., & Kurgan, L. (2015). In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces . FEBS Letters, 589(19 Pt A), 2561–2569. https://doi.org/10.1016/j.febslet.2015.08.014
  • Xue, S., Wang, R., Yang, F., Terns, R. M., Terns, M. P., Zhang, X., Maxwell, E. S., & Li, H. (2010). Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Molecular Cell, 39(6), 939–949. https://doi.org/10.1016/j.molcel.2010.08.022
  • Yuan, Y. R., Pei, Y., Chen, H. Y., Tuschl, T., & Patel, D. J. (2006). A potential protein-RNA recognition event along the RISC-loading pathway from the structure of A. aeolicus Argonaute with externally bound siRNA. Structure (London, England : 1993), 14(10), 1557–1565. https://doi.org/10.1016/j.str.2006.08.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.