80
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Cryptic intermediates and metastable states of proteins as predicted by OneG computational method

ORCID Icon & ORCID Icon
Pages 7899-7914 | Received 02 Sep 2020, Accepted 09 Mar 2021, Published online: 25 Mar 2021

References

  • Arrington, C. B., & Robertson, A. D. (2000). Correlated motions in native proteins from MS analysis of NH exchange: Evidence for a manifold of unfolding reactions in ovomucoid third domain. Journal of Molecular Biology, 300(1), 221–232. https://doi.org/10.1006/jmbi.2000.3859
  • Arrington, C. B., Teesch, L. M., & Robertson, A. D. (1999). Defining protein ensembles with native-state NH exchange: Kinetics of interconversion and cooperative units from combined NMR and MS analysis. Journal of Molecular Biology, 285(3), 1265–1275. https://doi.org/10.1006/jmbi.1998.2338
  • Bai, Y. (2003). Hidden intermediates and levinthal paradox in the folding of small proteins. Biochemical and Biophysical Research Communications, 305(4), 785–788. https://doi.org/10.1016/S0006-291X(03)00800-3
  • Bai, Y. (2006). Protein folding pathways studied by pulsed- and native-state hydrogen exchange. Chemical Reviews, 106(5), 1757–1768. https://doi.org/10.1021/cr040432i
  • Bai, Y., & Englander, S. W. (1996). Future Directions in Folding: The Multi-State Nature of Protein Structure. Proteins: Structure, Function, and Genetics, 24(2), 145–151. https://doi.org/10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO;2-I
  • Bai, Y., Milne, J. S., Mayne, L., & Englander, S. W. (1994). Protein stability parameters measured by hydrogen exchange. Proteins, 20(1), 4–14. https://doi.org/10.1002/prot.340200103
  • Bai, Y., Sosnick, T. R., Mayne, L., & Englander, S. W. (1995). Protein folding intermediates: Native-State Hydrogen Exchange. Science (New York, N.Y.), 269(5221), 192–197. https://doi.org/10.1126/science.7618079
  • Baldwin, R. L. (2008). The search for folding intermediates and the mechanism of protein folding. Annual Review of Biophysics, 37, 1–21. https://doi.org/10.1146/annurev.biophys.37.032807.125948
  • Baldwin, R. L., & Rose, G. D. (1999). Is protein folding hierarchic? II. Folding intermediates and transition states. Trends in Biochemical Sciences, 24(2), 77–83. https://doi.org/10.1016/S0968-0004(98)01345-0
  • Bhutani, N., & Udgaonkar, J. B. (2003). Folding subdomains of thioredoxin characterized by native-state hydrogen exchange. Protein Science : a Publication of the Protein Society, 12(8), 1719–1731. https://doi.org/10.1110/ps.0239503
  • Bigotti, M. G., Allocatelli, C. T., Staniforth, R. A., Arese, M., Cutruzzolà, F., & Brunori, M. (1998). Equilibrium unfolding of a small bacterial cytochrome, cytochrome c551 from Pseudomonas aeruginosa. FEBS Letters, 425(3), 385–390. https://doi.org/10.1016/S0014-5793(98)00256-7
  • Chamberlain, A. K., Handel, T. M., & Marqusee, S. (1996). Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nature Structural Biology, 3(9), 782–787. https://doi.org/10.1038/nsb0996-782
  • Chamberlain, A., & Marqusee, S. (1997). Touring the landscapes: Partially folded proteins examined by hydrogen exchange. Structure (London, England : 1993), 5(7), 859–863. https://doi.org/10.1016/S0969-2126(97)00240-2
  • Clarke, J., & Fersht, A. R. (1996). An evaluation of the use of hydrogen exchange at equilibrium to probe intermediates on the protein folding pathway. Folding and Design , 1(4), 243–254. https://doi.org/10.1016/S1359-0278(96)00038-7
  • Daggett, V., & Fersht, A. (2003). The present view of the mechanism of protein folding. Nature Reviews. Molecular Cell Biology, 4(6), 497–502. https://doi.org/10.1038/nrm1126
  • Dinner, A. R., Sali, A., Smith, L. J., Dobson, C. M., & Karplus, M. (2000). Understanding protein folding via free-energy surfaces from theory and experiment. Trends in Biochemical Sciences, 25(7), 331–339. https://doi.org/10.1016/S0968-0004(00)01610-8
  • Dixon, R. D. S., Chen, Y., Ding, F., Khare, S. D., Prutzman, K. C., Schaller, M. D., Campbell, S. L., & Dokholyan, N. V. (2004). New insights into FAK signaling and localization based on detection of a FAT domain folding intermediate. Structure (London, England : 1993), 12(12), 2161–2171. https://doi.org/10.1016/j.str.2004.09.011
  • Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426(6968), 884–890. https://doi.org/10.1038/nature02261
  • Dobson, C. M., & Evans, P. A. (1988). Protein structure . Trapping folding intermediates. Nature, 335(6192), 666–667. https://doi.org/10.1038/335666a0
  • Dobson, C. M., & Karplus, M. (1999). The fundamentals of protein folding, bringing together theory and experiment. Current Opinion in Structural Biology, 9, 99–101.
  • Englander, S. W., Mayne, L., & Krishna, M. M. G. (2007). Protein folding and misfolding: Mechanism and principles. Quarterly Reviews of Biophysics, 40(4), 287–326.
  • Englander, S. W., Mayne, L., & Rumbley, J. N. (2002). Submolecular cooperativity produces multi-state protein unfolding and refolding. Biophysical Chemistry, 101-102, 57–65. https://doi.org/10.1016/S0301-4622(02)00190-4
  • Feng, H., Vu, N. D., & Bai, Y. (2005). Detection of a hidden folding intermediate of the third domain of PDZ. Journal of Molecular Biology, 346(1), 345–353. https://doi.org/10.1016/j.jmb.2004.11.040
  • Fersht, A. R. (2000). A kinetically significant intermediate in the folding of barnase. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14121–14126. https://doi.org/10.1073/pnas.260502597
  • Fuentes, E. J., & Wand, A. J. (1998). Local dynamics and stability of apocytochrome b562 examined by hydrogen exchange. Biochemistry, 37(11), 3687–3698. https://doi.org/10.1021/bi972579s
  • Gianni, S., Ivarsson, Y., Jemth, P., Brunori, M., & Travaglini-Allocatelli, C. (2007). Identification and characterization of protein folding intermediates. Biophysical Chemistry, 128(2-3), 105–113. https://doi.org/10.1016/j.bpc.2007.04.008
  • Grantcharova, V. P., & Baker, D. (1997). Folding dynamics of the src SH3 domain. Biochemistry, 36(50), 15685–15692. https://doi.org/10.1021/bi971786p
  • Hilser, V. J., & Freire, E. (1996). Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. Journal of Molecular Biology, 262(5), 756–772. https://doi.org/10.1006/jmbi.1996.0550
  • Hsieh, H. C., Kumar, T. K. S., Sivaraman, T., & Yu, C. (2006). Refolding of a small all beta-sheet protein proceeds with accumulation of kinetic intermediates . Archives of Biochemistry and Biophysics, 447(2), 147–154. https://doi.org/10.1016/j.abb.2006.01.003
  • Huyghues-Despointes, B. M. P., Pace, C. N., Englander, S. W., & Scholtz, J. M. (2001). Measuring the conformational stability of a protein by hydrogen exchange. In K. M. Murphy (Eds.), Protein Structure, stability and folding (pp. 69–92). Humana Press Inc.
  • Huyghues-Despointes, B. M. P., Scholtz, J. M., & Pace, C. N. (1999). Protein conformational stabilities can be determined from hydrogen exchange rates. Nature Structural Biology, 6(10), 910–912. https://doi.org/10.1038/13273
  • Kumar, T. K. S., Sivaraman, T., Samuel, D., Srisailam, S., Ganesh, G., Hsieh, H.-C., Hung, K.-W., Peng, H.-J., Ho, M.-C., Arunkumar, A. I., & Yu, C. (2000). Protein folding and β-sheet proteins. Journal of the Chinese Chemical Society, 47(5), 1009–1042. https://doi.org/10.1002/jccs.200000141
  • Llinas, M., Gillespie, B., Dahlquist, F. W., & Marqusee, S. (1999). The energetics of T4 lysozyme reveal a hierarchy of conformations. Nature Structural Biology, 6(11), 1072–1078. https://doi.org/10.1038/14956
  • Llinas, M. (1999). Investigation of the role of subdomains in protein folding and misfolding [PhD Thesis, University of California]
  • Mayne, L., & Englander, S. W. (2000). Two-state vs. multistate protein unfolding studied by optical melting and hydrogen exchange. Protein Science : a Publication of the Protein Society, 9(10), 1873–1877. https://doi.org/10.1110/ps.9.10.1873
  • Mayo, S. L., & Baldwin, R. L. (1993). Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science (New York, N.Y.), 262(5135), 873–876. https://doi.org/10.1126/science.8235609
  • Michel, L. V., & Bren, K. L. (2008). Submolecular unfolding units of Pseudomonas aeruginosa cytochrome c-551. Journal of Biological Inorganic Chemistry : JBIC : a Publication of the Society of Biological Inorganic Chemistry, 13(5), 837–845. https://doi.org/10.1007/s00775-008-0370-y
  • Milne, J. S., Mayne, L., Roder, H., Wand, A. J., & Englander, S. W. (1998). Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Science : a Publication of the Protein Society, 7(3), 739–745. https://doi.org/10.1002/pro.5560070323
  • Nakamura, T., Makabe, K., Tomoyori, K., Maki, K., Mukaiyama, A., & Kuwajima, K. (2010). Different folding pathways taken by highly homologous proteins, goat alpha-lactalbumin and canine milk lysozyme . Journal of Molecular Biology, 396(5), 1361–1378. https://doi.org/10.1016/j.jmb.2010.01.021
  • Nath, U., & Udgaonkar, J. B. (1997). How do proteins fold? Current Science, 72, 180–191.
  • Orban, J., Alexander, P., Bryan, P., & Khare, D. (1995). Assessment of stability differences in the protein G B1 and B2 domains from hydrogen-deuterium exchange: Comparison with calorimetric data. Biochemistry, 34(46), 15291–15300. https://doi.org/10.1021/bi00046a038
  • Pace, C. N., & Scholtz, C. M. (1997). Measuring the conformational stability of a protein. In T. E. Creighton (Ed.), Protein structure - a practical approach (pp. 300–321). Oxford University Press Inc.
  • Park, C., & Marqusee, S. (2004). Probing the high energy states in proteins by proteolysis. Journal of Molecular Biology, 343(5), 1467–1476. https://doi.org/10.1016/j.jmb.2004.08.085
  • Plaxco, K. W., & Dobson, C. M. (1996). Time-resolved biophysical methods in the study of protein folding. Current Opinion in Structural Biology, 6(5), 630–636. https://doi.org/10.1016/S0959-440X(96)80029-7
  • Ragona, L., Fogolari, F., Romagnoli, S., Zetta, L., Maubois, J. L., & Molinari, H. (1999). Unfolding and refolding of bovine β-lactoglobulin monitored by hydrogen exchange measurements. Journal of Molecular Biology, 293(4), 953–969. https://doi.org/10.1006/jmbi.1999.3191
  • Ragona, L., Pusterla, F., Zetta, L., Monaco, H. L., & Molinari, H. (1997). Identification of a conserved hydrophobie cluster in partially folded bovine β-lactoglobulin at pH 2. Folding and Design, 2(5), 281–290. https://doi.org/10.1016/S1359-0278(97)00039-4
  • Raschke, T. M., & Marqusee, S. (1998). Hydrogen exchange studies of protein structure. Current Opinion in Structural Biology, 9, 80–86.
  • Richa, T., & Sivaraman, T. (2012). OneG: A Computational Tool for Predicting Cryptic Intermediates in the Unfolding Kinetics of Proteins under Native Conditions. PLoS ONE, 7(3), e32465 https://doi.org/10.1371/journal.pone.0032465
  • Richa, T., & Sivaraman, T. (2013). Structural stability and folding pathways of proteins under native conditions as monitored by hydrogen-deuterium exchange methods. International Journal of Research in Pharmaceutical Sciences, 4(4), 550–562.
  • Richa, T., & Sivaraman, T. (2014a). OneG-Vali: A computational tool for detecting, estimating and validating cryptic intermediates of proteins under native conditions RSC. RSC Advances, 4(68), 36325–36335. https://doi.org/10.1039/C4RA04642K
  • Richa, T., & Sivaraman, T. (2014b). Cooperative Unfolding Units and Metastable States of Cytochrome c551 from Pseudomonas aeruginosa under Native Conditions. Journal of Pharmaceutical Sciences and Research, 6, 144–147.
  • Richa, T. (2014). Computational tools for predicting cryptic intermediates and metastable states in the unfolding kinetics of proteins under native conditions [PhD Thesis, SASTRA University, India].
  • Sivaraman, T., Kumar, T. K. S., Hung, K. W., & Yu, C. (2000). Comparison of the structural stability of two homologous toxins isolated from the Taiwan cobra (Naja naja atra) venom. Biochemistry, 39(30), 8705–8710. https://doi.org/10.1021/bi992867j
  • Sivaraman, T., Kumar, T. K. S., Tu, Y. T., Peng, H. J., & Yu, C. (1999). Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability. Arch Biochem Biophys, 363(1), 107–115. https://doi.org/10.1006/abbi.1998.1057
  • Sivaraman, T. (1999). Investigation on the unfolding and folding kinetics of snake toxins from Taiwan cobra (Naja naja atra) [PhD Thesis, National Tsing Hua University: Taiwan].
  • Takei, J., Chu, R. A., & Bai, Y. (2000). Absence of stable intermediates on the folding pathway of barnase. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 10796–10801. https://doi.org/10.1073/pnas.190265797
  • Vu, N. D., Feng, H., & Bai, Y. (2004). The folding pathway of barnase: The rate-limiting transition state and a hidden intermediate under native conditions. Biochemistry, 43(12), 3346–3356. https://doi.org/10.1021/bi0362267
  • Wani, A. H., & Udgaonkar, J. B. (2006). HX-ESI-MS and optical studies of the unfolding of thioredoxin indicate stabilization of a partially unfolded, aggregation-competent intermediate at low pH. Biochemistry, 45(37), 11226–11238. https://doi.org/10.1021/bi060647h
  • Wildes, D., Anderson, L. M., Sabogal, A., & Marqusee, S. (2006). Native state energetics of the Src SH2 domain: Evidence for a partially structured state in the denatured ensemble. Protein Science : a Publication of the Protein Society, 15(7), 1769–1779. https://doi.org/10.1110/ps.062136006
  • Wildes, D., & Marqusee, S. (2005). Hydrogen exchange and ligand binding: Ligand-dependent and ligand-independent protection in the Src SH3 domain. Protein Science : a Publication of the Protein Society, 14(1), 81–88. https://doi.org/10.1110/ps.04990205
  • Yadav, S., & Ahmad, F. (2000). A new method for the determination of stability parameters of proteins from their heat-induced denaturation curves . Analytical Biochemistry, 283(2), 207–213. https://doi.org/10.1006/abio.2000.4641
  • Yu, C., Bhaskaran, R., Chuang, L. C., & Yang, C. C. (1993). Solution conformation of cobrotoxin: A nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry, 32(9), 2131–2136. https://doi.org/10.1021/bi00060a002
  • Zhou, Z., Feng, H., & Bai, Y. (2006). Detection of a hidden folding intermediate in the focal adhesion target domain: Implications for its function and folding. Proteins, 65(2), 259–265. https://doi.org/10.1002/prot.21107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.