641
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

A novel method for explaining the product inhibition mechanisms via molecular docking: inhibition studies for tyrosinase from Agaricus bisporus

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7926-7939 | Received 12 Dec 2020, Accepted 12 Mar 2021, Published online: 29 Mar 2021

References

  • Abo Shady, A., Ali, H., Sharaf, E., & Abdel-Barry, O. (2007). DPPH and hydroxyl radical scavenging and antioxidant activities of anilines and related compounds. Bulletin in Biological Chemistry & Environmental Science, 2, 257–266.
  • Ali, H. M., Abo-Shady, A., Eldeen, H. A. S., Soror, H. A., Shousha, W. G., Abdel-Barry, O. A., & Saleh, A. M. (2013). Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. Chemistry Central Journal, 7(1), 53. https://doi.org/10.1186/1752-153X-7-53
  • Ali, H. M., El-Gizawy, A. M., El-Bassiouny, R. E., & Saleh, M. A. (2015). Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO–catechol–cysteine reaction products. Journal of Food Science & Technology, 52(6), 3651–3659. https://doi.org/10.1007/s13197-014-1437-0
  • Bagherzadeh, K., Talari, F. S., Sharifi, A., Ganjali, M. R., Saboury, A. A., & Amanlou, M. (2015). A new insight into mushroom tyrosinase inhibitors: Docking, pharmacophore-based virtual screening, and molecular modeling studies. Journal of Biomolecular Structure & Dynamics, 33(3), 487–501. https://doi.org/10.1080/07391102.2014.893203
  • Bursulaya, B. D., Totrov, M., Abagyan, R., & Brooks, C. L. (2003). Comparative study of several algorithms for flexible ligand docking. Journal of Computer-Aided Molecular Design, 17(11), 755–763. https://doi.org/10.1023/b:jcam.0000017496.76572.6f
  • Canofeni, S., Di Sario, S., Mela, J., & Pilloton, R. (1994). Comparison of immobilisation procedures for development of an electrochemical PPO-based biosensor for on line monitoring of a depuration process. Analytical Letters, 27(9), 1659–1669. https://doi.org/10.1080/00032719408007425
  • Chang, T.-S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10(6), 2440–2475. https://doi.org/10.3390/ijms10062440
  • Channar, P. A., Saeed, A., Larik, F. A., Rafiq, M., Ashraf, Z., Jabeen, F., & Fattah, T. A. (2017). Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates as mushroom tyrosinase inhibitors. Bioorganic & Medicinal Chemistry, 25(21), 5929–5938. https://doi.org/10.1016/j.bmc.2017.09.009
  • Chen, Q.-X., Song, K.-K., Qiu, L., Liu, X.-D., Huang, H., & Guo, H.-Y. (2005). Inhibitory effects on mushroom tyrosinase by p-alkoxybenzoic acids. Food Chemistry, 91(2), 269–274. https://doi.org/10.1016/j.foodchem.2004.01.078
  • Chen, W.-C., Tseng, T.-S., Hsiao, N.-W., Lin, Y.-L., Wen, Z.-H., Tsai, C.-C., Lee, Y.-C., Lin, H.-H., & Tsai, K.-C. (2015). Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Scientific Reports, 5, 7995. https://doi.org/10.1038/srep07995
  • Colak, A., Sahin, E., Yildirim, M., & Sesli, E. (2007). Polyphenol oxidase potentials of three wild mushroom species harvested from Lişer high plateau. Food Chemistry, 103(4), 1426–1433. https://doi.org/10.1016/j.foodchem.2006.10.059
  • Decker, H., Schweikardt, T., Nillius, D., Salzbrunn, U., Jaenicke, E., & Tuczek, F. (2007). Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Gene, 398(1–2), 183–191. https://doi.org/10.1016/j.gene.2007.02.051
  • Dedeoglu, N., & Guler, O. O. (2009). Differential in vitro inhibition of polyphenoloxidase from a wild edible mushroom Lactarius salmonicolor. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(2), 464–470. https://doi.org/10.1080/14756360802190244
  • Espín, J. C., Morales, M., Varón, R., Tudela, J., & García-Cánovas, F. (1995). A continuous spectrophotometric method for determining the monophenolase and diphenolase activities of apple polyphenol oxidase. Analytical Biochemistry, 231(1), 237–246. https://doi.org/10.1006/abio.1995.1526
  • Ferencz, L., & Muntean, D. L. (2014). Potential inhibitors for bacterial dihydropteroate synthase. The results of a comprehensive screening based on structural similarity with p-amino-benzoic acid and docking simulation on the surface of enzyme. Revue Roumaine de Chimie, 59(9), 733–738.
  • Flurkey, W. H., & Inlow, J. K. (2017). Use of mushroom tyrosinase to introduce michaelis-menten enzyme kinetics to biochemistry students. Biochemistry and Molecular Biology Education, 45(3), 270–276.
  • Galeazzi, M. A., Sgarbieri, V. C., & Constantinides, S. M. (1981). Isolation, purification and physicochemical characterization of polyphenoloxidases (PPO) from a dwarf variety of banana (Musa cavendishii L). Journal of Food Science, 46(1), 150–155. https://doi.org/10.1111/j.1365-2621.1981.tb14551.x
  • Gasparetti, C., Nordlund, E., Jänis, J., Buchert, J., & Kruus, K. (2012). Extracellular tyrosinase from the fungus Trichoderma reesei shows product inhibition and different inhibition mechanism from the intracellular tyrosinase from Agaricus bisporus. Biochimica et Biophysica Acta, 1824(4), 598–607. https://doi.org/10.1016/j.bbapap.2011.12.012
  • Gawlik-Dziki, U., Szymanowska, U., & Baraniak, B. (2007). Characterization of polyphenol oxidase from broccoli (Brassica oleracea var. botrytis italica) florets. Food Chemistry, 105(3), 1047–1053.
  • Gür, B. (2020). Determination of the pH-dependent immobilization efficacy of α-glycosidase and its catalytic performance on SnO2:Sb/ITO thin films. Biochemical Engineering Journal, 163, 107758. https://doi.org/10.1016/j.bej.2020.107758
  • Gür, F., Cengiz, M., & Gür, B. (2021). Alternations in nuclear factor kappa beta activity (NF-kB) in the rat brain due to long-term use of atomoxetine for treating ADHD: In vivo and in silico studies. Biochemical and Biophysical Research Communications, 534, 927–932. https://doi.org/10.1016/j.bbrc.2020.10.072
  • Gür, F., Cengiz, M., Kutlu, H. M., Cengiz, B. P., & Ayhancı, A. (2021). Molecular docking analyses of Escin as regards cyclophosphamide-induced cardiotoxicity: In vivo and in silico studies. Toxicology and Applied Pharmacology, 411, 115386. https://doi.org/10.1016/j.taap.2020.115386
  • Gür, F., Gür, B., Erkayman, B., Halıcı, Z., & Karakoç, A. (2020). Investigation of serum and brain superoxide dismutase levels depending on atomoxetine used in attention-deficit/hyperactivity disorder treatment: A combination of in vivo and molecular docking studies. Bioorganic Chemistry, 105, 104435. https://doi.org/10.1016/j.bioorg.2020.104435
  • Gür, F., Kaya, E. D., Gür, B., Türkhan, A., & Onganer, Y. (2019). Preparation of bio-electrodes via Langmuir–Blodgett technique for pharmaceutical and waste industries and their biosensor application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 124005. https://doi.org/10.1016/j.colsurfa.2019.124005
  • Ha, Y. M., Park, Y. J., Kim, J.-A., Park, D., Park, J. Y., Lee, H. J., Lee, J. Y., Moon, H. R., & Chung, H. Y. (2012). Design and synthesis of 5-(substituted benzylidene)thiazolidine-2,4-dione derivatives as novel tyrosinase inhibitors. European Journal of Medical Chemistry, 49, 245–252. https://doi.org/10.1016/j.ejmech.2012.01.019
  • Hassani, S., Haghbeen, K., & Fazli, M. (2016). Non-specific binding sites help to explain mixed inhibition in mushroom tyrosinase activities. European Journal of Medicinal Chemistry, 122, 138–148. https://doi.org/10.1016/j.ejmech.2016.06.013
  • Hofstee, B. (1959). Non-inverted versus inverted plots in enzyme kinetics. Nature, 184(4695), 1296–1298. https://doi.org/10.1038/1841296b0
  • Ismaya, W. T., Rozeboom, H. J., Weijn, A., Mes, J. J., Fusetti, F., Wichers, H. J., & Dijkstra, B. W. (2011). Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 50(24), 5477–5486. https://doi.org/10.1021/bi200395t
  • Kolcuoğlu, Y. (2012). Purification and comparative characterization of monophenolase and diphenolase activities from a wild edible mushroom (Macrolepiota gracilenta). Process Biochemistry, 47(12), 2449–2454. https://doi.org/10.1016/j.procbio.2012.10.008
  • Kumar, V. A., Mohan, T. K., & Murugan, K. (2008). Purification and kinetic characterization of polyphenol oxidase from Barbados cherry (Malpighia glabra L.). Food Chemistry, 110(2), 328–333. https://doi.org/10.1016/j.foodchem.2008.02.006
  • Kuyumcu, İ. (2014). Yabani ve yenilebilir bir mantar olan lactarius eucalypti OK Mill & RN Hilton'dan polifenol oksidazın saflaştırılması ve karakterizasyonu. Karadeniz Teknik Üniversitesi/Fen Bilimleri Enstitüsü.
  • Lerch, K. (1995). Tyrosinase: Molecular and active-site structure. ACS Publications.
  • Lin, H., Ng, A. W. R., & Wong, C. W. (2016). Partial purification and characterization of polyphenol oxidase from Chinese parsley (Coriandrum sativum). Food Science and Biotechnology, 25(Suppl 1), 91–96. https://doi.org/10.1007/s10068-016-0103-x
  • Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56(3), 658–666. https://doi.org/10.1021/ja01318a036
  • Martinez, J. H., Solano, F., Peñafiel, R., Galindo, J. S. D., Iborra, J. L., & Lozano, J. A. (1986). Comparative study of tyrosinases from different sources: Relationship between halide inhibition and the enzyme active site. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 83(3), 633–636. https://doi.org/10.1016/0305-0491(86)90309-3
  • Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H., & Sugiyama, M. (2006). Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. Journal of Biological Chemistry, 281(13), 8981–8990. https://doi.org/10.1074/jbc.M509785200
  • Mayer, A. M., & Harel, E. (1979). Polyphenol oxidases in plants. Phytochemistry, 18(2), 193–215. https://doi.org/10.1016/0031-9422(79)80057-6
  • Özen, A., Colak, A., Dincer, B., & Güner, S. (2004). A diphenolase from persimmon fruits (Diospyros kaki L., Ebenaceae). Food Chemistry, 85(3), 431–437. https://doi.org/10.1016/j.foodchem.2003.07.022
  • Öztürk, C., Aksoy, M., & Küfrevioğlu, Ö. İ. (2020). Purification of tea leaf (Camellia sinensis) polyphenol oxidase by using affinity chromatography and investigation of its kinetic properties. Journal of Food Measurement & Characterization, 14(1), 31–38. https://doi.org/10.1007/s11694-019-00264-8
  • Praveenkumar, E., Gurrapu, N., Kumar Kolluri, P., Yerragunta, V., Reddy Kunduru, B., & Subhashini, N. J. P. (2019). Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1-aryl-1H-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-β hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitors. Bioorganic Chemistry, 90, 103056. https://doi.org/10.1016/j.bioorg.2019.103056
  • Rescigno, A., Sollai, F., Pisu, B., Rinaldi, A., & Sanjust, E. (2002). Tyrosinase inhibition: General and applied aspects. Journal of Enzyme Inhibitors and Medicinal Chemistry, 17(4), 207–218. https://doi.org/10.1080/14756360210000010923
  • Sánchez-Ferrer, Á., Neptuno Rodríguez-López, J., García-Cánovas, F., & García-Carmona, F. (1995). Tyrosinase: A comprehensive review of its mechanism. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology, 1247(1), 1–11. https://doi.org/10.1016/0167-4838(94)00204-T
  • Shi, Y., Chen, Q.-X., Wang, Q., Song, K.-K., & Qiu, L. (2005). Inhibitory effects of cinnamic acid and its derivatives on the diphenolase activity of mushroom (Agaricus bisporus) tyrosinase. Food Chemistry, 92(4), 707–712. https://doi.org/10.1016/j.foodchem.2004.08.031
  • Subhashini, N. J. P., Praveen Kumar, E., Gurrapu, N., & Yerragunta, V. (2019). Design and synthesis of imidazolo-1, 2,3-triazoles hybrid compounds by microwave-assisted method: Evaluation as an antioxidant and antimicrobial agents and molecular docking studies. Journal of Molecular Structure, 1180, 618–628. https://doi.org/10.1016/j.molstruc.2018.11.029
  • Taha, M., Baharudin, M. S., Ismail, N. H., Imran, S., Khan, M. N., Rahim, F., Selvaraj, M., Chigurupati, S., Nawaz, M., Qureshi, F., & Vijayabalan, S. (2018). Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic Chemistry, 80, 36–42. https://doi.org/10.1016/j.bioorg.2018.05.021
  • Trott, O., & Olson, A. J. (2010). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Whitaker, J. R. (1993). Principles of enzymology for the food sciences (Vol. 61). CRC Press.
  • Yoruk, R., & Marshall, M. R. (2003). Physicochemical properties and function of plant polyphenol oxidase: A review 1. Journal of Food Biochemistry, 27(5), 361–422. https://doi.org/10.1111/j.1745-4514.2003.tb00289.x
  • Zekiri, F., Molitor, C., Mauracher, S. G., Michael, C., Mayer, R. L., Gerner, C., & Rompel, A. (2014). Purification and characterization of tyrosinase from walnut leaves (Juglans regia). Phytochemistry, 101, 5–15. https://doi.org/10.1016/j.phytochem.2014.02.010
  • Zhang, J.-P., Chen, Q.-X., Song, K.-K., & Xie, J.-J. (2006). Inhibitory effects of salicylic acid family compounds on the diphenolase activity of mushroom tyrosinase. Food Chemistry, 95(4), 579–584. https://doi.org/10.1016/j.foodchem.2005.01.042
  • Zhou, L., Liao, T., Liu, W., Zou, L., Liu, C., & Terefe, N. S. (2020). Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Critical Reviews in Food Science and Nutrition, 60(21), 3594–3621. https://doi.org/10.1080/10408398.2019.1702500
  • Zhou, X., Xiao, Y., Meng, X., & Liu, B. (2018). Full inhibition of Whangkeumbae pear polyphenol oxidase enzymatic browning reaction by l-cysteine. Food Chemistry, 266, 1–8. https://doi.org/10.1016/j.foodchem.2018.05.086
  • Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309. https://doi.org/10.1080/14756366.2018.1545767
  • Zhang, X., & Flurkey, W. H. (1997). Phenoloxidases in Portabella mushrooms. Journal of Food Science, 62(1), 97–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.