518
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Computational investigation of phytochemicals from Withania somnifera (Indian ginseng/ashwagandha) as plausible inhibitors of GluN2B-containing NMDA receptors

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7991-8003 | Received 08 Nov 2020, Accepted 15 Mar 2021, Published online: 10 May 2021

References

  • Ahmad, I., Shaikh, M., Surana, S., Ghosh, A., & Patel, H. (2020). p38α MAP kinase inhibitors to overcome EGFR tertiary C797S point mutation associated with osimertinib in non-small cell lung cancer (NSCLC): Emergence of fourth-generation EGFR inhibitor. Journal of Biomolecular Structure and Dynamics, 11, 1–14. https://doi.org/10.1080/07391102.2020.1844801
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Bhatt, J. M., Prakash, A., Suryavanshi, P. S., & Dravid, S. M. (2013). Effect of ifenprodil on GluN1/GluN2B N-methyl-d-aspartate receptor gating. Molecular Pharmacology, 83(1), 9–21. https://doi.org/10.1124/mol.112.080952
  • Bhowmick, S., AlFaris, N. A., ALTamimi, J. Z., ALOthman, Z. A., Aldayel, T. S., Wabaidur, S. M., & Islam, M. A. (2020). Screening and analysis of bioactive food compounds for modulating the CDK2 protein for cell cycle arrest: Multi-cheminformatics approaches for anticancer therapeutics. Journal of Molecular Structure, 1216, 128316. https://doi.org/10.1016/j.molstruc.2020.128316
  • Birla, H., Keswani, C., Rai, S. N., Singh, S. S., Zahra, W., Dilnashin, H., Rathore, A. S., & Singh, S. P. (2019). Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. Behavioral and Brain Functions, 15(1), 9. https://doi.org/10.1186/s12993-019-0160-4
  • Blanke, M. L., & VanDongen, A. M. J. (2009). Activation mechanisms of the NMDA receptor. In A. M. Van Dongen (Ed.), Biology of the NMDA receptor (Chapter 13). CRC Press/Taylor & Francis. Available from: https://www.ncbi.nlm.nih.gov/books/NBK5274/
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., & Salmon, J. K. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [paper presentation]. In SC'06: The 2006 Proceedings of ACM/IEEE Conference on Supercomputing (pp. 43–43). IEEE, Tampa, Florida. https://doi.org/10.1145/1188455.1188544
  • Casalvieri, K. A., Matheson, C. J., Backos, D. S., & Reigan, P. (2020). Molecular docking of substituted pteridinones and pyrimidines to the ATP-binding site of the N-terminal domain of RSK2 and associated MM/GBSA and molecular field datasets. Data Brief, 29, 105347. https://doi.org/10.1016/j.dib.2020.105347
  • Dar, N. J., Bhat, J. A., Satti, N. K., Sharma, P. R., Hamid, A., & Ahmad, M. (2017). Withanone, an active constituent from withania somnifera, affords protection against NMDA-induced excitotoxicity in neuron-like cells. Molecular Neurobiology, 54(7), 5061–5073. https://doi.org/10.1007/s12035-016-0044-7
  • Desmond Molecular Dynamics System. (2018). Maestro-Desmond Interoperability Tools. Schrödinger.
  • Doǧan, E., Aygün, H., Arslan, G., Rzayev, E., Avcı, B., Ayyıldız, M., & Ağar, E. (2020). The role of NMDA receptors in the effect of purinergic P2X7 receptor on spontaneous seizure activity in WAG/Rij rats with genetic absence epilepsy. Frontiers in Neuroscience, 14, 414. https://doi.org/10.3389/fnins.2020.00414
  • Evans, D. J., & Holian, B. L. (1985). The Nose–Hoover thermostat. The Journal of Chemical Physics, 83(8), 4069–4074. https://doi.org/10.1063/1.449071
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. I. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Glasgow, N. G., Siegler Retchless, B., & Johnson, J. W. (2015). Molecular bases of NMDA receptor subtype-dependent properties. The Journal of Physiology, 593(1), 83–95. https://doi.org/10.1113/jphysiol.2014.273763
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s https://cb.imsc.res.in/imppat/home
  • Ivanova, L., Tammiku-Taul, J., García-Sosa, A. T., Sidorova, Y., Saarma, M., & Karelson, M. (2018). Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor GFRα1 and small-molecule ligands. ACS Omega, 3(9), 11407–11414. https://doi.org/10.1021/acsomega.8b01524
  • Kerns, E. H., Di, L., & Properties, D. L. (2008). Drug-like Properties: Concepts, Structure Design and Methods. California (USA): Elsevier.
  • Kuboyama, T., Tohda, C., & Komatsu, K. (2014). Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biological & Pharmaceutical Bulletin, 37(6), 892–897. https://doi.org/10.1248/bpb.b14-00022
  • Kumar, B. K., Faheem, Sekhar, K. V., Ojha, R., Prajapati, V. K., Pai, A., & Murugesan, S. (2020). Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Journal of Biomolecular Structure and Dynamics, 23, 1–24.
  • Kumar, G., & Patnaik, R. (2016). Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study. Medical Hypotheses, 92, 35–43. https://doi.org/10.1016/j.mehy.2016.04.034
  • Kumar, S., Seal, C. J., Howes, M. J., Kite, G. C., & Okello, E. J. (2010). In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells. Phytotherapy Research, 24(10), 1567–1574. https://doi.org/10.1002/ptr.3261
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • LigPrep. (2008). Schrödinger, LLC.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Lipton, S. A. (2004). Failures and successes of NMDA receptor antagonists: Molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 1(1), 101–110. https://doi.org/10.1602/neurorx.1.1.101
  • Liu, J., Chang, L., Song, Y., Li, H., & Wu, Y. (2019). The role of NMDA receptors in Alzheimer's disease. Frontiers in Neuroscience, 13, 43. https://doi.org/10.3389/fnins.2019.00043
  • Martyna, G. J. (1994). Remarks on "Constant-temperature molecular dynamics with momentum conservation". Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 50(4), 3234–3236. https://doi.org/10.1103/physreve.50.3234
  • Pandey, A., Bani, S., Dutt, P., Kumar Satti, N., Avtar Suri, K., & Nabi Qazi, G. (2018). Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine, 102, 211–221. https://doi.org/10.1016/j.cyto.2017.10.019
  • Paoletti, P., Bellone, C., & Zhou, Q. (2013). NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nature Reviews Neuroscience, 14(6), 383–400. https://doi.org/10.1038/nrn3504
  • Patel, H. M., Ahmad, I., Pawara, R., Shaikh, M., & Surana, S. (2020). In silico search of triple mutant T790M/C797S allosteric inhibitors to conquer acquired resistance problem in non-small cell lung cancer (NSCLC): A combined approach of structure-based virtual screening and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 5, 1–5. https://doi.org/10.1080/07391102.2020.1734092
  • Patel, H. M., Shaikh, M., Ahmad, I., Lokwani, D., & Surana, S. J. (2020). BREED based de novo hybridization approach: Generating novel T790M/C797S-EGFR tyrosine kinase inhibitors to overcome the problem of mutation and resistance in non small cell lung cancer (NSCLC). Journal of Biomolecular Structure and Dynamics, 17, 1–9. https://doi.org/10.1080/07391102.2020.1754918
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Prakash, J., Yadav, S. K., Chouhan, S., & Singh, S. P. (2013). Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochemical Research, 38(5), 972–980. https://doi.org/10.1007/s11064-013-1005-4
  • QikProp. (2008). Schrödinger, LLC.
  • Regan, M. C., Romero-Hernandez, A., & Furukawa, H. (2015). A structural biology perspective on NMDA receptor pharmacology and function. Current Opinion in Structural Biology, 33, 68–75. https://doi.org/10.1016/j.sbi.2015.07.012
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Shipton, O. A., & Paulsen, O. (2013). GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 369(1633), 20130163. https://doi.org/10.1098/rstb.2013.0163
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Singh, M., & Ramassamy, C. (2017). In vitro screening of neuroprotective activity of Indian medicinal plant Withania somnifera. Journal of Nutritional Science, 6, e54. https://doi.org/10.1017/jns.2017.48
  • Singh, R., Ganeshpurkar, A., Kumar, D., Kumar, D., Kumar, A., & Singh, S. K. (2020). Identifying potential GluN2B subunit containing N-methyl-d-aspartate receptor inhibitors: An integrative in silico and molecular modeling approach. Journal of Biomolecular Structure and Dynamics, 38(9), 2533–2545. https://doi.org/10.1080/07391102.2019.1635530
  • Sirrieh, R. E. (2015). The structural mechanism screening and identifying anti-dengue phytocompounds. Journal of Biomolecular Structure and Dynamics of allosteric modulation of the NMDA receptor: A balance of tensions [Doctoral dissertation]. Faculty of the University of Texas Health Science Center at Houston.
  • Vora, J., Patel, S., Athar, M., Sinha, S., Chhabria, M. T., Jha, P. C., & Shrivastava, N. (2020). Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds. Journal of Biomolecular Structure and Dynamics, 38, 1726–1740. https://doi.org/10.1080/07391102.2019.1615002
  • Waqar, M., & Batool, S. (2017). In silico analysis of binding interaction of conantokins with NMDA receptors for potential therapeutic use in Alzheimer's disease. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 23, 42. https://doi.org/10.1186/s40409-017-0132-9
  • Zhou, X., Ding, Q., Chen, Z., Yun, H., & Wang, H. (2013). Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-d-aspartate receptor function and neuronal excitotoxicity. Journal of Biological Chemistry, 288(33), 24151–24159. https://doi.org/10.1074/jbc.M113.482000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.