416
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Network pharmacology based high throughput screening for identification of multi targeted anti-diabetic compound from traditionally used plants

, , , ORCID Icon &
Pages 8004-8017 | Received 29 May 2020, Accepted 15 Mar 2021, Published online: 26 Mar 2021

References

  • Alam, S., & Khan, F. (2018). Virtual screening, Docking, ADMET and System Pharmacology studies on Garcinia caged Xanthone derivatives for Anticancer activity. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-23768-7
  • Amirkia, V., & Heinrich, M. (2015). Natural products and drug discovery: A survey of stakeholders in industry and academia. Frontiers in Pharmacology, 6, 237–238. https://doi.org/10.3389/fphar.2015.00237
  • Arooj, M., Thangapandian, S., John, S., Hwang, S., Park, J. K., & Lee, K. W. (2011). 3D QSAR pharmacophore modeling, in silico screening, and density functional theory (DFT) approaches for identification of human chymase inhibitors. International Journal of Molecular Sciences, 12(12), 9236–9264. https://doi.org/10.3390/ijms12129236
  • Bailey, C. J. & Day, D. (2003). Antidiabetic drugs. The British Journal of Cardiology, 10, 128–136. https://bjcardio.co.uk/2003/03/antidiabetic-drugs/
  • Bastikar, V. A., Bastikar, A. V., & Chhajed, S. S. (2020). Understanding the role of natural medicinal compounds such as curcumin and allicin against SARS-CoV-2 proteins as potential treatment against COVID-19: An in silico approach. Journal of Proteomics & Bioinformatics, 13(7), 1–14. https://doi.org/10.35248/0974-276X.1000510
  • Biggadike, K., Bledsoe, R. K., Coe, D. M., Cooper, T. W. J., House, D., Iannone, M. A., Macdonald, S. J. F., Madauss, K. P., McLay, I. M., Shipley, T. J., Taylor, S. J., Tran, T. B., Uings, I. J., Weller, V., & Williams, S. P. (2009). Design and x-ray crystal structures of high-potency nonsteroidal glucocorticoid agonists exploiting a novel binding site on the receptor. Proceedings of the National Academy of Sciences of the United States of America, 106(43), 18114–18119. https://doi.org/10.1073/pnas.0909125106
  • Chen, C., Wang, T., Wu, F., He, G., Ouyang, L., Xiang, M., Jiang, Q., Huang, W., & Peng, C. (2014). Combining structure-based pharmacophore modeling, virtual screening, and in silico ADMET analysis to discover novel tetrahydro-quinoline based pyruvate kinase isozyme M2 activators with antitumor activity. Drug Design, Development and Therapy, 8, 1195–1210. https://doi.org/10.2147/DDDT.S62921
  • Cronet, P., Petersen, J. F. W., Folmer, R., Blomberg, N., Sjöblom, K., Karlsson, U., Lindstedt, E. L., & Bamberg, K. (2001). Structure of the PPARα and -γ ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure (London, England : 1993), 9(8), 699–706. (01)00634-7 https://doi.org/10.1016/S0969-2126(01)00634-7
  • Dajani, R., Fraser, E., Roe, S. M., Young, N., Good, V., Dale, T. C., & Pearl, L. H. (2001). Crystal structure of glycogen synthase kinase 3β: Structural basis for phosphate-primed substrate specificity and autoinhibition. Cell, 105(6), 721–732. (01)00374-9 https://doi.org/10.1016/S0092-8674(01)00374-9
  • Diabetes (2020). World Health Organization. https://www.who.int/news-room/fact-sheets/detail/diabetes
  • Einstein, M., Akiyama, T. E., Castriota, G. A., Wang, C. F., McKeever, B., Mosley, R. T., Becker, J. W., Moller, D. E., Meinke, P. T., Wood, H. B., & Berger, J. P. (2008). The differential interactions of peroxisome proliferator-activated receptor gamma ligands with Tyr473 is a physical basis for their unique biological activities. Molecular Pharmacology, 73(1), 62–74. https://doi.org/10.1124/mol.107.041202
  • Favelyukis, S., Till, J. H., Hubbard, S. R., & Miller, W. T. (2001). Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nature Structural Biology, 8(12), 1058–1063. https://doi.org/10.1038/nsb721
  • Global Report on Diabetes WHO Library Cataloguing-in-Publication Data Global report on diabetes (2016). http://www.who.int/about/licensing/copyright_form/index.html
  • Gogoi, B., Gogoi, D., Silla, Y., Kakoti, B. B., & Bhau, B. S. (2017). Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics. Molecular bioSystems, 13(2), 406–416. https://doi.org/10.1039/c6mb00807k
  • Gogoi, D., Baruah, V. J., Chaliha, A. K., Kakoti, B. B., Sarma, D., & Buragohain, A. K. (2016). 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. Journal of Theoretical Biology, 411, 68–80. https://doi.org/10.1016/j.jtbi.2016.09.016
  • Gogoi, D., Chaliha, A. K., Sarma, D., Kakoti, B. B., & Buragohain, A. K. (2017). Novel butyrylcholinesterase inhibitors through pharmacophore modeling, virtual screening and DFT-based approaches along-with design of bioisosterism-based analogues. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 85, 646–657. https://doi.org/10.1016/j.biopha.2016.11.076
  • Gogoi, N., Chetia, D., Gogoi, B., & Das, A. (2021). Multiple-targets directed screening of flavonoid compounds from Citrus species to find out antimalarial lead with predicted mode of action: An in silico and whole cell-based in vitro approach. Current Computer-Aided Drug Design, 17(1), 69–82. https://doi.org/10.2174/1573409916666191226103000
  • Gu, J., Gui, Y., Chen, L., Yuan, G., Lu, H. Z., & Xu, X. (2013). Use of Natural Products as Chemical Library for Drug Discovery and Network Pharmacology. PLoS One, 8(4), e62839–10. https://doi.org/10.1371/journal.pone.0062839
  • Guo, Y. B., Liang, Y. C., Chen, M. J., Bai, Q. S., & Lu, L. H. (2010). Molecular dynamics simulations of thermal effects in nanometric cutting process. Science China Technological Sciences, 53(3), 870–874. https://doi.org/10.1007/s11431-009-0243-9
  • IDF Diabetes Atlas-Ninth edition (2019). https://www.diabetesatlas.org/upload/resources/2019/IDF_Atlas_9th_Edition_2019.pdf
  • John, S., Thangapandian, S., Arooj, M., Hong, J. C., Kim, K. D., & Lee, K. W. (2011). Development, evaluation and application of 3D QSAR Pharmacophore model in the discovery of potential human renin inhibitors. BMC Bioinformatics, 12 (Suppl 14), S4. https://doi.org/10.1186/1471-2105-12-S14-S4
  • Jude, K. M., Banerjee, A. L., Haldar, M. K., Manokaran, S., Roy, B., Mallik, S., Srivastava, D. K., & Christianson, D. W. (2006). Ultrahigh resolution crystal structures of human carbonic anhydrases I and II complexed with “two-prong” inhibitors reveal the molecular basis of high affinity. Journal of the American Chemical Society, 128(9), 3011–3018. https://doi.org/10.1021/ja057257n
  • Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J. I., & Nagata, Y. (2004). Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure (London, England: 1993), 12(3), 429–438. https://doi.org/10.1016/j.str.2004.02.005
  • Kavitha, R., Karunagaran, S., Chandrabose, S. S., Lee, K. W., & Meganathan, C. (2015). Pharmacophore modeling, virtual screening, molecular docking studies and density functional theory approaches to identify novel ketohexokinase (KHK) inhibitors. Bio Systems, 138, 39–52. https://doi.org/10.1016/j.biosystems.2015.10.005
  • Khanal, P., Patil, B. M., Mandar, B. K., Dey, Y. N., & Duyu, T. (2019). Network pharmacology-based assessment to elucidate the molecular mechanism of anti-diabetic action of Tinospora cordifolia. Clinical Phytoscience, 5(1), 1–9. https://doi.org/10.1186/s40816-019-0131-1
  • Kim, H. M., Park, B. S., Kim, J. I., Kim, S. E., Lee, J., Oh, S. C., Enkhbayar, P., Matsushima, N., Lee, H., Yoo, O. J., & Lee, J. O. (2007). Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell, 130(5), 906–917. https://doi.org/10.1016/j.cell.2007.08.002
  • Klopfenstein, S. R., Evdokimov, A. G., Colson, A. O., Fairweather, N. T., Neuman, J. J., Maier, M. B., Gray, J. L., Gerwe, G. S., Stake, G. E., Howard, B. W., Farmer, J. A., Pokross, M. E., Downs, T. R., Kasibhatla, B., & Peters, K. G. (2006). 1,2,3,4-Tetrahydroisoquinolinyl sulfamic acids as phosphatase PTP1B inhibitors. Bioorganic & Medicinal Chemistry Letters, 16(6), 1574–1578. https://doi.org/10.1016/j.bmcl.2005.12.051
  • Lee, J. O., Yang, H., Georgescu, M. M., Cristofano, A. D., Maehama, T., Shi, Y., Dixon, J. E., Pandolfi, P., & Pavletich, N. P. (1999). Crystal structure of the PTEN tumor suppressor: Implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99(3), 323–334. https://doi.org/10.1016/S0092-8674(00)81663-3
  • Li, W., Yuan, G., Pan, Y., Wang, C., & Chen, H. (2017). Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: A review. Frontiers in Pharmacology, 8, 10–74. https://doi.org/10.3389/fphar.2017.00074
  • Lin, J. H., & Yamazaki, M. (2003). Role of P-glycoprotein in pharmacokinetics: Clinical implications. Clinical Pharmacokinetics, 42(1), 59–98. https://doi.org/10.2165/00003088-200342010-00003
  • Mahanta, S., Chowdhury, P., Gogoi, N., Goswami, N., Borah, D., Kumar, R., Chetia, D., Borah, P., Buragohain, A. K., & Gogoi, B. (2020). Potential anti-viral activity of approved repurposed drug against main protease of SARS-CoV-2: An in silico based approach. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1768902
  • Miller, B. R., Nguyen, H., Hu, C. J., Lin, C., & Nguyen, Q. T. (2014). New and emerging drugs and targets for type 2 diabetes. American Health & Drug Benefits, 7(8), 452-463. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280522/pdf/ahdb-07-452.pdf
  • Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335. https://doi.org/10.1021/np200906s
  • Niu, M., Dong, F., Tang, S., Fida, G., Qin, J., Qiu, J., Liu, K., Gao, W., & Gu, Y. (2013). Pharmacophore modeling and virtual screening for the discovery of new type 4 cAMP phosphodiesterase (PDE4) inhibitors. PLoS One, 8(12), e82360. https://doi.org/10.1371/journal.pone.0082360
  • Oyama, T., Toyota, K., Waku, T., Hirakawa, Y., Nagasawa, N., Kasuga, J. I., Hashimoto, Y., Miyachi, H., & Morikawa, K. (2009). Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures. Acta Crystallographica. Section D, Biological Crystallography, 65(Pt 8), 786–795. https://doi.org/10.1107/S0907444909015935
  • Palleria, C., Di Paolo, A., Giofrè, C., Caglioti, C., Leuzzi, G., Siniscalchi, A., De Sarro, G., & Gallelli, L. (2013). Pharmacokinetic drug-drug interaction and their implication in clinical management. In Journal of Research in Medical Sciences, 18(7), 600–609.
  • Peters, J. U., Weber, S., Kritter, S., Weiss, P., Wallier, A., Boehringer, M., Hennig, M., Kuhn, B., & Loeffler, B. M. (2004). Aminomethylpyrimidines as novel DPP-IV inhibitors: A 10(5)-fold activity increase by optimization of aromatic substituents . Bioorganic & Medicinal Chemistry Letters, 14(6), 1491–1493. https://doi.org/10.1016/j.bmcl.2004.01.019
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • pkCSM. (n.d.). Retrieved August 5, (2020). from http://biosig.unimelb.edu.au/pkcsm/
  • Ritchie, T. J., & Macdonald, S. J. F. (2009). The impact of aromatic ring count on compound developability—Are too many aromatic rings a liability in drug design?. Drug Discovery Today. , 14(21–22), 1011–1020. https://doi.org/10.1016/j.drudis.2009.07.014
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Shiau, A. K., Barstad, D., Loria, P. M., Cheng, L., Kushner, P. J., Agard, D. A., & Greene, G. L. (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 95(7), 927–937. https://doi.org/10.1016/S0092-8674(00)81717-1 https://doi.org/10.1016/S0092-8674(00)81717-1
  • Shivanika, C., Deepak Kumar, S., Venkataraghavan Ragunathan, P., & Tiwari, S. A., B. D. P. (2020). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 1–27. https://doi.org/10.1080/07391102.2020.1815584
  • Sjöblom, M., Singh, A. K., Zheng, W., Wang, J., Tuo, B. G., Krabbenhöft, A., Riederer, B., Gros, G., & Seidler, U. (2009). Duodenal acidity “sensing” but not epithelial HCO3-supply is critically dependent on carbonic anhydrase II expression. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13094–13099. https://doi.org/10.1073/pnas.0901488106
  • Sun, D., Wang, Z., Caille, S., DeGraffenreid, M., Gonzalez-Lopez de Turiso, F., Hungate, R., Jaen, J. C., Jiang, B., Julian, L. D., Kelly, R., McMinn, D. L., Kaizerman, J., Rew, Y., Sudom, A., Tu, H., Ursu, S., Walker, N., Willcockson, M., Yan, X., Ye, Q., & Powers, J. P. (2011). Synthesis and optimization of novel 4,4-disubstituted cyclohexylbenzamide derivatives as potent 11β-HSD1 inhibitors. Bioorganic & Medicinal Chemistry Letters, 21(1), 405–410. https://doi.org/10.1016/j.bmcl.2010.10.129
  • Takahashi, N., Senda, M., Lin, S., Goto, T., Yano, M., Sasaki, T., Murakami, S., & Kawada, T. (2011). Auraptene regulates gene expression involved in lipid metabolism through PPARα activation in diabetic obese mice. Molecular Nutrition & Food Research, 55(12), 1791–1797. https://doi.org/10.1002/mnfr.201100401
  • Tomioka, H. (2014). Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship). Current Pharmaceutical Design, 20(27), 4305–4306. https://doi.org/10.2174/1381612819666131118203915
  • Underwood, C. R., Garibay, P., Knudsen, L. B., Hastrup, S., Peters, G. H., Rudolph, R., & Reedtz-Runge, S. (2010). Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. The Journal of Biological Chemistry, 285(1), 723–730. https://doi.org/10.1074/jbc.M109.033829
  • Williams, P. A., Cosme, J., Matak Vinković, D., Ward, A., Angove, H. C., Day, P. J., Vonrhein, C., Tickle, I. J., & Jhoti, H. (2004). Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science (New York, N.Y.), 305(5684), 683–686. https://doi.org/10.1126/science.1099736
  • Wynn, R. M., Kato, M., Chuang, J. L., Tso, S. C., Li, J., & Chuang, D. T. (2008). Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity. The Journal of Biological Chemistry, 283(37), 25305–25315. https://doi.org/10.1074/jbc.M802249200
  • Xiao, B., Heath, R., Saiu, P., Leiper, F. C., Leone, P., Jing, C., Walker, P. A., Haire, L., Eccleston, J. F., Davis, C. T., Martin, S. R., Carling, D., & Gamblin, S. J. (2007). Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 449(7161), 496–500. https://doi.org/10.1038/nature06161
  • Xu, Z. B., Chaudhary, D., Olland, S., Wolfrom, S., Czerwinski, R., Malakian, K., Lin, L., Stahl, M. L., Joseph-McCarthy, D., Benander, C., Fitz, L., Greco, R., Somers, W. S., & Mosyak, L. (2004). Catalytic domain crystal structure of protein kinase C-theta (PKCtheta). The Journal of Biological Chemistry, 279(48), 50401–50409. https://doi.org/10.1074/jbc.M409216200
  • Yazdanian, M., Glynn, S. L., Wright, J. L., & Hawi, A. (1998). Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharmaceutical Research, 15(9), 1490–1494. https://doi.org/10.1023/A:1011930411574
  • Zheng, X., Zhang, L., Zhai, J., Chen, Y., Luo, H., & Hu, X. (2012). The molecular basis for inhibition of sulindac and its metabolites towards human aldose reductase. FEBS Letters, 586(1), 55–59. https://doi.org/10.1016/j.febslet.2011.11.023
  • Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews. Endocrinology, 14(2), 88–98. https://doi.org/10.1038/nrendo.2017.151

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.